Skip to main content
Dryad

Data from: Neural structure mapping in human probabilistic reward learning

Cite this dataset

Luyckx, Fabrice; Nili, Hamed; Spitzer, Bernhard; Summerfield, Christopher (2019). Data from: Neural structure mapping in human probabilistic reward learning [Dataset]. Dryad. https://doi.org/10.5061/dryad.7k7s800

Abstract

Humans can learn abstract concepts that describe invariances over relational patterns in data. One such concept, known as magnitude, allows stimuli to be compactly represented on a single dimension (i.e. on a mental line). Here, we measured representations of magnitude in humans by recording neural signals whilst they viewed symbolic numbers. During a subsequent reward-guided learning task, the neural patterns elicited by novel complex visual images reflected their payout probability in a way that suggested they were encoded onto the same mental number line, with 'bad' bandits sharing neural representation with 'small' numbers and 'good' bandits with 'large' numbers. Using neural network simulations, we provide a mechanistic model that explains our findings and shows how structural alignment can promote transfer learning. Our findings suggest that in humans, learning about reward probability is accompanied by structural alignment of value representations with neural codes for the abstract concept of magnitude.

Usage notes