Skip to main content

Data from: Vocal traits and diet explain avian sensitivities to anthropogenic noise

Cite this dataset

Francis, Clinton D. (2016). Data from: Vocal traits and diet explain avian sensitivities to anthropogenic noise [Dataset]. Dryad.


Global population growth has caused extensive human-induced environmental change, including a near-ubiquitous transformation of the acoustical environment due to the propagation of anthropogenic noise. Because the acoustical environment is a critical ecological dimension for countless species to obtain, interpret and respond to environmental cues, highly novel environmental acoustics have the potential to negatively impact organisms that use acoustics for a variety of functions, such as communication and predator/prey detection. Using a comparative approach with 308 populations of 183 bird species from 14 locations in Europe, North American and the Caribbean, I sought to reveal the intrinsic and extrinsic factors responsible for avian sensitivities to anthropogenic noise as measured by their habitat use in noisy versus adjacent quiet locations. Birds across all locations tended to avoid noisy areas, but trait-specific differences emerged. Vocal frequency, diet and foraging location predicted patterns of habitat use in response to anthropogenic noise, but body size, nest placement and type, other vocal features and the type of anthropogenic noise (chronic industrial vs. intermittent urban/traffic noise) failed to explain variation in habitat use. Strongly supported models also indicated the relationship between sensitivity to noise and predictive traits had little to no phylogenetic structure. In general, traits associated with hearing were strong predictors – species with low-frequency vocalizations, which experience greater spectral overlap with low-frequency anthropogenic noise tend to avoid noisy areas, whereas species with higher frequency vocalizations respond less severely. Additionally, omnivorous species and those with animal-based diets were more sensitive to noise than birds with plant-based diets, likely because noise may interfere with the use of audition in multimodal prey detection. Collectively, these results suggest that anthropogenic noise is a powerful sensory pollutant that can filter avian communities nonrandomly by interfering with birds' abilities to receive, respond to and dispatch acoustic cues and signals.

Usage notes


North America