Skip to main content
Dryad

Oxygen data from Eastern Tropical North Pacific cruises and floats 2021-2022

Data files

Aug 08, 2024 version files 403.02 MB

Abstract

Using standard calibration schemes commercial oxygen optode sensors typically yield oxygen concentrations in the range of 2-4 umol/kg under anoxic conditions. They are thus unable to detect the roughly 0.1 umol/kg levels of oceanic functional anoxia. Here, a modified Stern-Volmer equation is used to characterize and calibrate 26 optodes deployed on 16 autonomous floats in the Eastern Tropical Pacific (ETNP) oxygen deficient zone (ODZ) using a combination of manufacturers', laboratory, and in-situ data. Laboratory calibrations lasting several months and conducted over 2 years show that optodes kept under anoxic conditions drift at rates of order 0.2 umol/kg/yr, with much higher drifts in the first month. The initial transient is plausibly due to the degassing of plastic components of the optodes and might be reduced by replacing these with metal. Oxygen concentrations measured by these calibrated optodes in the nearly anoxic ODZ core of the ETNP deviated from both the laboratory calibrations and ship-based STOX measurements by similar amounts. Thus with current sensors, an in-situ anoxic oxygen calibration only once or twice a year is needed to maintain an accuracy close to 0.2 umol/kg. An algorithm to find the anoxic cores of the ETNP ODZ is developed and used to remove the drift in the float optodes to this accuracy. This is an order-of-magnitude improvement in the low oxygen performance of the optodes and could be implemented on the existing database of Argo oxygen floats to map the geography of functional anoxia. This dataset contains the raw float data, the float data calibrated using the manufacturers’ schemes and our new scheme. The calibration points and our final calibration constants, as well as the STOX data used to validate our new calibrations, are included.