Skip to main content
Dryad

Schrödinger cat states of a nuclear spin qudit in silicon

Data files

May 27, 2024 version files 137.96 MB

Abstract

High-dimensional quantum systems are a valuable resource for quantum information processing. They can be used to encode error-correctable logical qubits, for instance in continuous-variable states of oscillators such as microwave cavities or the motional modes of trapped ions. Powerful encodings include ‘Schrödinger cat’ states, and superpositions of widely displaced coherent states, which also embody the challenge of quantum effects at the large scale. Alternatively, recent proposals suggest encoding logical qubits in high-spin atomic nuclei, which can host hardware-efficient versions of continuous-variable codes on a finite-dimensional system. Here we demonstrate the creation and manipulation of Schrödinger cat states using the spin-7/2 nucleus of a single antimony (123Sb) atom, embedded and operated within a silicon nanoelectronic device. We use a coherent multi-frequency control scheme to produce spin rotations that preserve the SU(2) symmetry of the qudit, and constitute logical Pauli operations for logical qubits encoded in the Schrödinger cat states. The Wigner function of the cat states exhibits parity oscillations with a contrast up to 0.982(5), and state fidelities up to 0.913(2). These results demonstrate high-fidelity preparation of nonclassical resource states and logical control in a single atomic-scale object, opening up applications in quantum information processing and quantum error correction within a scalable, manufacturable semiconductor platform.