Skip to main content
Dryad

Data for: Phosphorus limitation of early growth differs between nitrogen-fixing and non-fixing dry tropical forest tree species

Data files

Nov 15, 2022 version files 115.22 KB

Click names to download individual files

Abstract

Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions.

We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments, and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits.

N-fixers grew larger with increasing P addition in contrast to non-N-fixers, which showed fewer responses in C allocation and P-use. Foliar P increased with P addition for both functional types, while P acquisition strategies did not vary among treatments but differed between functional types, with N-fixers showing higher root phosphatase activity (RPA) than non-fixers.

Growth responses suggest that N-fixers are limited by P, but non-fixers may be limited by other resources. However, regardless of limitation, P acquisition traits such as mycorrhizal colonization and RPA were non-plastic across a steep P gradient. Differential limitation among plant functional types has implications for forest succession and earth system models.