Skip to main content
Dryad

What drives diversification in a pantropical plant lineage with extraordinary capacity for long-distance dispersal and colonisation?

Data files

Aug 27, 2021 version files 479.44 KB
Sep 28, 2021 version files 8.70 MB

Abstract

Aim: Colonisation of new areas may entail shifts in diversification rates linked to biogeographic movement (dispersification), which may involve niche evolution if species were not pre-adapted to the new environments. Scleria (Cyperaceae) includes c. 250 species and has a pantropical distribution suggesting an extraordinary capacity for long-distance dispersal and colonisation. We investigate patterns of diversification in Scleria, and whether they are coupled with colonisation events, climate niche shifts or both.

Location: Tropics and subtropics.

Taxon: Nutrushes Scleria (Cyperaceae).

Methods: We used molecular data from three DNA regions sequenced for 278 accessions representing 140 Scleria taxa (53% of species) to develop a chronogram, model ancestral ranges, and measure rates of diversification. Integrating data from 12,978 digitised and georeferenced herbarium records, we investigated niche evolution.

Results: High dispersal rates in Scleria, a genus with multiple dispersal syndromes, make reconstruction of ancestral areas at deep nodes in the phylogeny highly equivocal. Main dispersal and colonisation events involve movements from South to Central America (c. 19), from Africa to Madagascar (c. 12), from Asia to Oceania (c. 7), from Africa to South America (c. 7) and Central America to South America (c. 6). Two main shifts in diversification rates happened during the warm period of the Miocene.

Main conclusions: Dispersification from South America to Africa without climate niche shift seems to explain the diversification shift in section Hypoporum implying that species were pre-adapted. Shifts in climate niche evolution predate the second shift in diversification rates suggesting lineages were pre-adapted prior to biogeographic movements. Within subgenus Scleria, colonisations of Asia and Madagascar by sections Elatae and Abortivae, respectively, are coupled with niche shifts suggesting that these colonisations involved climate niche adaptation.