Skip to main content
Dryad

Data from: Spatial variation in housing construction material in low- and middle-income countries

Abstract

Housing infrastructure and quality is a major determinant of infectious disease risk and other health outcomes in regions of the world where vector borne, waterborne and neglected tropical diseases are endemic. It is important to quantify the geographical distribution of improvements to the major dwelling components to identify and target resources towards populations at risk. The aim of this study was to model the sub-national spatial variation in housing materials using covariates with quasi-global coverage and use the resulting estimates to map the predicted coverage across the world’s low- and middle-income countries (LMICs). Data relating to the materials used in dwelling construction were sourced from nationally representative household surveys conducted since 2005. Materials used for construction of flooring, walls, and roof were reclassified as improved or unimproved. Households lacking location information were georeferenced using a novel methodology, and a suite of environmental and demographic spatial covariates were extracted at those locations for use as model predictors. Integrated nested Laplace approximation (INLA) models were fitted to obtain, and map predicted probabilities for each dwelling component. The dataset compiled included information from households in 283,000 clusters from 350 surveys. Low coverage of improved housing was predicted across the Sahel and southern Sahara regions of Africa, much of inland Amazonia, and areas of the Tibetan plateau. Coverage of improved roofs and walls was high in the Central Asia, East Asia and Pacific and Latin America and the Caribbean regions, while improvements in all three components, but most notably floors, was low in Sub-Saharan Africa. The strongest determinants of dwelling component quality related to urbanization and economic development, suggesting that housing improvement programs should focus on supply-side interventions that provide the resources for these improvements directly to the populations that need them. These findings are made available to the reader as files that can be imported into a GIS for integration into relevant analysis to derive improved estimates of preventable health burdens attributed to housing.