Skip to main content
Dryad

Cortico-subcortical β burst dynamics underlying movement cancellation in humans

Data files

Jan 13, 2022 version files 14.05 GB

Select up to 11 GB of files for download

Abstract

Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, including the subthalamic nucleus (STN), thalamus, and sensorimotor cortices (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site depth-recordings from SMC and either STN or thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials and were followed within 50ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from all three sites) confirmed that β-bursts in STN precede thalamic β-bursts. This provides first empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.