Skip to main content
Dryad

Data from: Urbanization and primary productivity mediate the predator-prey relationship between deer and coyotes

Data files

Apr 16, 2024 version files 6.23 MB

Abstract

Predator-prey interactions are important to regulating populations and structuring communities but are affected by many dynamic, complex factors, across larges-scales, making them difficult to study. Integrated population models (IPMs) offer a potential solution to understanding predator-prey relationships by providing a framework for leveraging many different datasets and testing hypotheses about interactive factors. Here, we evaluate the coyote-deer (Canis latransOdocoileus virginianus) predator-prey relationship across the state of North Carolina (NC). Because both species have similar habitat requirements and may respond to human disturbance, we considered net primary productivity (NPP) and urbanization as key mediating factors. We estimated deer survival and fecundity by integrating camera trap, harvest, biological and hunter observation datasets into a two-stage, two-sex Lefkovich population projection matrix. We allowed survival and fecundity to vary as functions of urbanization, NPP and coyote density and projected abundance forward to test eight hypothetical scenarios. We estimated initial average deer and coyote densities to be 11.83 (95% CI: 5.64, 20.80) and 0.46 (95% CI: 0.02, 1.45) individuals/km2, respectively. We found a negative relationship between current levels of coyote density and deer fecundity in most areas which became more negative under hypothetical conditions of lower NPP or higher urbanization, leading to lower projected deer abundances. These results suggest that coyotes could have stronger effects on deer populations in NC if their densities rise, but primarily in less productive and/or more suburban habitats. Our case study provides an example of how IPMs can be used to better understand the complex relationships between predator and prey under changing environmental conditions.