Skip to main content
Dryad

How and to what extent have degraded grasslands recovered after ecological restoration in China: A meta-analysis?

Data files

May 06, 2021 version files 678.15 KB

Abstract

  1. A range of measures for restoration have been tested on degraded grasslands in China. However, the factors controlling recovery to natural grassland conditions and the overall effectiveness of restoration remain unclear.
  2. We synthesized data from 365 studies for 103 grassland sites, with 21 variables related to plant community and soil properties. We used meta-analysis to evaluate the effectiveness of ecological restoration and the influence of restoration approach, grassland type, soil depth, climatic conditions, and the duration of restoration programmes.
  3. Ecological restoration showed larger enhancements on plant community structure and biomass compared with plant diversity and soil properties, and the recovery of soil properties was substantially slower than the recovery of vegetation. Specifically, aboveground biomass showed faster recovery than belowground biomass, but plant species richness did not achieve full recovery to natural conditions. Soil water content, soil carbon and nitrogen content, and soil carbon storage did not recover fully to natural conditions, although they were improved to a greater extent in topsoil than in subsoil. In contrast, soil nutrient availability and microbial biomass generally recovered to the level of natural grasslands, and their restoration efforts tended to increase with soil depth, possibly due to the more enhanced belowground biomass in subsoil. There was no general significant difference in restoration efforts between passive and active restorations. The duration of restoration programmes, grassland type, and climatic conditions modulated the effectiveness of grassland restoration.
  4. Synthesis and applications. Our study showed that vegetation recovered faster than soil in degraded grasslands after ecological restoration. Given that passive and active restoration regimes achieved similar recovery, we recommend that passive restoration as the most cost-effective option for restoring degraded grasslands where a spontaneous recovery process is possible. We also propose that a restoration network is initiated to facilitate the development of grassland recovery strategies, informed by restoration approaches, grassland types, and climatic conditions.