Skip to main content
Dryad

Data from: Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis

Cite this dataset

Düsterwald, Kira Michaela et al. (2018). Data from: Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis [Dataset]. Dryad. https://doi.org/10.5061/dryad.kj1f3v4

Abstract

Fast synaptic inhibition in the nervous system depends on the transmembrane flux of Cl- ions based on the neuronal Cl- driving force. Established theories regarding the determinants of Cl- driving force have recently been questioned. Here we present biophysical models of Cl- homeostasis using the pump-leak model. Using numerical and novel analytic solutions, we demonstrate that the Na+/K+-ATPase, ion conductances, impermeant anions, electrodiffusion, water fluxes and cation-chloride cotransporters (CCCs) play roles in setting the Cl- driving force. Our models, together with experimental validation, show that while impermeant anions can contribute to setting [Cl-]i in neurons, they have a negligible effect on the driving force for Cl- locally and cell-wide. In contrast, we demonstrate that CCCs are well-suited for modulating Cl- driving force and hence inhibitory signalling in neurons. Our findings reconcile recent experimental findings and provide a framework for understanding the interplay of different chloride regulatory processes in neurons.

Usage notes