Low-dose biliatresone treatment of pregnant mice causes subclinical biliary disease in their offspring: Evidence for a spectrum of neonatal injury
Data files
Feb 16, 2024 version files 45.04 KB
-
Plos1_Complied_data.xlsx
-
README.md
Abstract
Biliary atresia is a neonatal disease characterized by damage, inflammation, and fibrosis of the liver and bile ducts and by abnormal bile metabolism. It likely results from a prenatal environmental exposure that spares the mother and affects the fetus. Our aim was to develop a model of fetal injury by exposing pregnant mice to low-dose biliatresone, a plant toxin implicated in biliary atresia in livestock, and then to determine whether there was a hepatobiliary phenotype in their pups. Pregnant mice were treated orally with 15 mg/kg/d biliatresone for 2 days. Histology of the liver and bile ducts, serum bile acids, and liver immune cells of pups from treated mothers were analyzed at P5 and P21. Pups had no evidence of histological liver or bile duct injury or fibrosis at either timepoint. In addition, growth was normal. However, serum levels of glycocholic acid were elevated at P5, suggesting altered bile metabolism, and the serum bile acid profile became increasingly abnormal through P21, with enhanced glycine conjugation of bile acids. There was also immune cell activation observed in the liver at P21. These results suggest that prenatal exposure to low doses of an environmental toxin can cause subclinical disease including liver inflammation and aberrant bile metabolism even in the absence of histological changes. This finding suggests a wide potential spectrum of disease after fetal biliary injury.
README: Low-dose biliatresone treatment of pregnant mice causes subclinical biliary disease in their offspring: evidence for a spectrum of neonatal injury
https://doi.org/10.5061/dryad.m63xsj48x
This dataset comprises data collected from pups born to mothers administered either biliatresone or a vehicle control via gavage. Analysis was conducted on pups at postnatal days 5 and 21, with mothers analyzed alongside pups at postnatal day 5. Physical measurements, liver, bile duct, and serum samples were collected. Serum samples were utilized for assessing serum biochemistry relevant to liver diseases and bile acid content. Liver samples underwent analysis for cytokeratin-19 (KRT19) staining, immune profiling, and bile acid measurements. Bile duct samples were subjected to hyaluronic acid staining.
Description of the data and file structure
The data are structured in accordance with the organization of figures in our manuscript, with two comparison groups designated: "D" representing the vehicle control group and "B" representing the biliatresone-treated group. Each cell value within the groups represents data obtained from individual pups. High-performance liquid chromatography (HPLC) measurements are presented as normalized area ratios for specific bile acids. The first cell in each sheet provides a brief background on the experiment and the specific measurement presented in the sheet.
Sheet 1
Sheet title: Fig 1B.P5 serum biochemistry
Description: Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO), and P5 pups were analyzed. Serum biochemistry and physical parameters for P5 pups. The number of pups is shown in parentheses. D denotes DMSO treated, B denotes Biliatresone treated. Each cell denote value from individual pup. ALP (U/L), AST (U/L), Albumin (g/dL), and Weight (gm) were analyzed and are reported.
Sheet 2
Sheet title: Fig 1D.P5 KRT19 quantification
Description: Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO), and P5 pups were analyzed. Quantification of the number of cytokeratin 19 (KRT19) positive foci per portal triad and KRT19 positive area per field in P5 pups, with the number of pups indicated in parentheses. D denotes DMSO treated, B denotes Biliatresone treated. Each cell denote value from individual pup. KRT 19 +ve Area per field (%) and KRT 19 +ve duct/PT were analyzed and are reported. PT: Portal traid.
Sheet 3
Sheet title: Fig 1F.P5 hyaluronic acid
Description: Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO), and P5 pups were analyzed. Quantification of submucosal area stained by hyaluronic acid (HA)-binding protein. The number of P5 pups is shown in parentheses. D denotes DMSO treated, B denotes Biliatresone treated. Each cell denote value from individual pup.HA content (%) is reported in this sheet.
Sheet 4
Sheet title: Fig 2B.P21 serum biochemistry
Description: Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO), and P21 pups were analyzed. Serum biochemistry and physical parameters for P21 pups. The number of pups is shown in parentheses. D denotes DMSO treated, B denotes Biliatresone treated. Each cell denote value from individual pup. ALP (U/L), AST (U/L), Albumin (g/dL), and Weight (gm) were analyzed and are reported.
Sheet 5
Sheet title: Fig 2D.P21 KRT19 quantification
Description: Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO), and P21 pups were analyzed. Quantification of the number of cytokeratin 19 (KRT19) positive foci per portal triad and KRT19 positive area per field in P21 pups, with the number of pups indicated in parentheses. D denotes DMSO treated, B denotes Biliatresone treated. Each cell denote value from individual pup. KRT 19 +ve Area per field (%) and KRT 19 +ve duct/PT were analyzed and are reported. PT: Portal traid.
Sheet 6
Sheet title: Fig 3A.P5 liver bile acid
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Liver from P5 pups were analyzed. Relative amounts of various bile acids from P5 liver are reported here. Individual bile acids were normalized to the corresponding mean from control pups from each experiment. Each column denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated. Empty cells represent the values that could not be determined. Each row denotes individual bile acid that were determined. The abbreviations for bile acid could be found in method section.
Sheet 7
Sheet title: Fig 3B.P5 serum bile acid
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Serum from P5 pups were analyzed. Relative amounts of various bile acids from P5 Serum are reported here. Individual bile acids were normalized to the corresponding mean from control pups from each experiment. Each Column denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated. Empty cells represent the values that could not be determined. Each row denotes individual bile acid that were determined. The abbreviations for bile acid could be found in method section.
Sheet 8
Sheet title: Fig 3C.P21 liver bile acid
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Liver from P21 pups were analyzed. Relative amounts of various bile acids from P21 liver are reported here. Individual bile acids were normalized to the corresponding mean from control pups from each experiment. Each Column denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated. Empty cells represent the values that could not be determined. Each row denotes individual bile acid that were determined. The abbreviations for bile acid could be found in method section.
Sheet 9
Sheet title: Fig 3D.P21 serum bile acid
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Serum from P21 pups were analyzed. Relative amounts of various bile acids from P21 Serum are reported here. Individual bile acids were normalized to the corresponding mean from control pups from each experiment. Each Column denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated. Empty cells represent the values that could not be determined. Each row denotes individual bile acid that were determined. The abbreviations for bile acid could be found in method section.
Sheet 10
Sheet title: Fig 4B.P21 Immune cells
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Liver from P21 pups were analyzed. Quantification showing numbers of T-cells, CD4 cells, CD8 cells, B-cells, monocytes and neutrophils in livers isolated from P21 pups. The number of pups is shown in parentheses. Each cell denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated.
Sheet 11
Sheet title: Fig 5BMother serum biochemistry
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Mothers were euthanized along with P21 pups, and serum biochemistry and physical parameters were measured for both control and biliatresone-treated mothers.Each cell denote value from individual pup. D denotes DMSO treated. B denotes Biliatresone treated.
Sheet 12
Sheet title: Fig Fig 5C.Mother immune cells
Pregnant mothers (E14 and E15) were treated with 15 mg/kg of biliatresone or vehicle control (DMSO). Mothers were euthanized along with P21 pups, and the numbers of immune cells in livers isolated from both control and biliatresone-treated mothers were quantified. Quantification showing numbers of T-cells, CD4 cells, CD8 cells, B-cells, monocytes and neutrophils in livers isolated from mothers.