Skip to main content
Dryad

The underground life of homeodomain-leucine zipper transcription factors

Data files

Feb 02, 2022 version files 2.93 MB

Abstract

Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors (TFs) and hormones that are crucial players regulating root plasticity. Multiple TF families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) TFs in root development. This family is divided into four subfamilies (I to IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip TFs in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several ones from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.