Skip to main content
Dryad logo

Data from: Emerging patterns of genetic variation in the New Zealand endemic scallop Pecten novaezelandiae


Silva, Catarina N. S.; Gardner, Jonathan P. A. (2015), Data from: Emerging patterns of genetic variation in the New Zealand endemic scallop Pecten novaezelandiae, Dryad, Dataset,


Both historical and contemporary processes influence the genetic structure of species, but the relative roles of such processes are still difficult to access. Population genetic studies of species with recent evolutionary histories such as the New Zealand endemic scallop Pecten novaezelandiae (<1 Ma) permit testing of the effects of recent processes affecting gene flow and shaping genetic structure. In addition, studies encompassing the entire distributional range of species can provide insight into colonization processes. Analyses of genetic variation in P. novaezelandiae (952 individuals from 14 locations, genotyped at 10 microsatellite loci) revealed a weak but significant regional structure across the distributional range of the species, as well as latitudinal gradients of genetic diversity and differentiation: estimates of migration rates supported these patterns. Our results suggest that the observed genetic structure and latitudinal gradients reflect a stepping-stone model of colonization (north to south) and emerging divergence of populations as a result of ongoing limitations to gene flow and insufficient time to reach migration–drift equilibrium. The low levels of interpopulation and interregional genetic differentiation detected over hundreds of kilometres reflect the recent evolutionary history of P. novaezelandiae and stand in contrast to patterns reported for other evolutionary older species at the same spatial scale. The outcomes of this study contribute to a better understanding of evolutionary processes influencing the genetic variation of species and provide vital information on the genetic structure of P. novaezelandiae.

Usage Notes


New Zealand