Skip to main content
Dryad

Extracellular Vesicles from Pneumocystis carinii-infected rats impair fungal viability but are dispensable for macrophage functions

Data files

Jan 12, 2024 version files 6.11 MB

Abstract

Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism and the acquisition of essential nutrients from host lungs remains unexplored.

Transmission electron micrographs show Extracellular Vesicles (EVs) are found near Pneumocystisspp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii- and P. murina-infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and indicated a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro, did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels but did not affect macrophages' ability to kill or phagocytose P. carinii. These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis-infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.