Skip to main content
Dryad

Data from: A review of the glacial environment arthropod trace fossils Umfolozia and Warvichnium with the description of new ichnotaxa

Cite this dataset

de Barros, Gabriel E. B. et al. (2023). Data from: A review of the glacial environment arthropod trace fossils Umfolozia and Warvichnium with the description of new ichnotaxa [Dataset]. Dryad. https://doi.org/10.5061/dryad.pc866t1sf

Abstract

Trace fossils are important records of the presence and behaviour of animals in the past, especially in deposits where few body fossils are preserved. They tend to provide the main palaeobiological record for past glacial environments and are thus very important for understanding the ecology of these palaeoenvironments. Two ichnogenera are common from past glacial environments: Umfolozia and Warvichnium. Both Umfolozia and Warvichnium are attributed to arthropods, and the former occurs across the Late Palaeozoic Ice Age (LPIA) and the latter occurs during both the LPIA and the Quaternary glacial event. Here, we review the stratigraphic record, ichnotaxonomy, palaeoecology, palaeoenvironments, and likely tracemakers of these two ichnogenera. In addition to assessing morphological ichnotaxobases, we use multivariate morphometric analysis and inferential statistical tests to support our ichnotaxonomic revisions. The diagnosis of Umfolozia is revised, with the description of a new ichnospecies, Umfolozia terere isp. nov., and the emendation of the previously named Umfolozia riojana (formerly Umfolozia longula) nom. rev. emend. We revised Warvichnium, maintaining the original Warvichnium ulbrichi, and allocating two morphologies to the ichnogenus Irichnus: Irichnus saltatorius and I. paripinnatus isp. nov.  These trace fossils record several behaviours, and have implications for palaeoenvironmental interpretations and the evolution of invertebrate ecosystems. Using Umfolozia and Warvichnium as case studies, we demonstrate the application of morphometric analysis in ichnotaxonomy and highlight this as a tool that may be applied to other trace-fossil groups.

README: Data from: A review of the glacial environment arthropod trace fossils Umfolozia and Warvichnium with the description of new ichnotaxa


The data was collected from previous publications (listed below) and new material collected samples that are housed in the Coleo Arqueolgica e Paleontolgica (CAP) at the Federal University of So Carlos (UFSCar Sorocaba campus, So Paulo, Brazil) at the Laboratrio de Paleobiologia e Astrobiologia (LPA) under codes CAP/1D- and CAP/1H-. We processed the data using Zeiss ZEN 3.5 Lite (Blue Edition) software and later in RStudio.

References used:
[1] Walter, H., 1985. Zur Ichnologie des Pleistozns von Liebegast. Freib. Forschungshefte C, 101116.
[2] Gaigalas, A., Uchman, A., 2004. Trace fossils from Upper Pleistocene varved clays S of Kaunas, Lithuania. Geologija 45, 1626.
[3] Uchman, A., Gaigalas, A., Kazakauskas, V., 2008. Trace fossils from the Upper Pleistocene glaciolacustrine laminated sediments of Lithuania. Geologija 50, 212226. doi.org/10.2478/v10056-008-0047-9
[4] Uchman, A., Kazakauskas, V., Gaigalas, A., 2009. Trace fossils from Late Pleistocene varved lacustrine sediments in eastern Lithuania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 272, 199211. doi.org/10.1016/j.palaeo.2008.08.003
[5] Uchman, A., Kumpulainen, R.A., 2011. Trace fossils in Quaternary glacial varved clays near Uppsala, Sweden. GFF 133, 135140. doi.org/10.1080/11035897.2011.618274
[6] Wjcik-Tabol, P., Uchman, A., Kazakauskas, V., 2022. Were Pleistocene proglacial lakes biological deserts? Insights from varved clays in Lithuania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 594, 110928. doi.org/10.1016/j.palaeo.2022.110928
[7] de Barros, G.E.B., Becker-Kerber, B., Sedorko, D., Lima, J.H.D., Pacheco, M.L.A.F., 2021. Ichnological aspects of the Aquidauana Formation (Upper Carboniferous, Itarar Group, Brazil): An arthropod-colonized glacial setting. Palaeogeogr. Palaeoclimatol. Palaeoecol. 578, 110575. doi.org/10.1016/j.palaeo.2021.110575
[8] Anderson, A.M., 1975. Turbidites and arthropod trackways in the Dwyka glacial deposits (early Permian) of southern Africa. Trans. Geol. Soc. South Africa 78, 265273.
[9] Anderson, A.M., 1981. The Umfolozia Arthropod Trackways in the Permian Dwyka and Ecca Series of South Africa. J. Paleontol. 55, 84108.
[10] Savage, N.M., 1971. A Varvite Ichnocoenosis From The Dwyka Series Of Natal. Lethaia 4, 217233. doi.org/10.1111/j.1502-3931.1971.tb01290.x
[11] Han, Y., Pickerill, R.K., 1994. Palichnology of the Lower Devonian Wapske Formation, Perth-Andover-Mount Carleton region, northwestern New Brunswick, eastern Canada. Atl. Geol. 30, 217245. doi.org/10.4138/2131
[12] Aceolaza, F.G., Buatois, L.A., 1993. Nonmarine perigondwanic trace fossils from the Late Paleozoic of Argentina. Ichnos 2, 183201. doi.org/10.1080/10420949309380092
[13] Aceolaza, F.G., Buatois, L.A., 1991. Trazas Fsiles del Paleozoico Superior Continental Argentino. Ameghiniana 28, 89108.
[14] Gandini, R., Netto, R.G., Souza, P.A., 2007. Paleoicnologia e a palinologia dos ritmitos do Grupo Itarar na pedreira de guas Claras (Santa Catarina , Brasil). Gaea 3, 4759.
[15] Buatois, L.A., Netto, R.G., Mngano, M.G., 2010. Ichnology of late Paleozoic postglacial transgressive deposits in Gondwana: Reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge, in: Lpez-Gamund, O.R., Buatois, L.A. (Eds.), Late Paleozoic Glacial Events and Postglacial Transgressions in Gondwana. Geological Society of America, USA, pp. 149173. doi.org/10.1130/2010.2468(07)
[16] Netto, R.G., Tognoli, F.M.W., Gandini, R., Lima, J.H.D., Gibert, J.M., 2012. Ichnology of the Phanerozoic Deposits of Southern Brazil: Synthetic Review, in: Netto, R.G., Carmona, N.B., Tognoli, F.M.W. (Eds.), Ichnology of Latin America - Selected Papers. Monografias da Sociedade Brasileira de Paleontologia, Porto Alegre, RS, Brazil, pp. 3768.
[17] Lima, J.H.D., Netto, R.G., Corra, C.G., Lavina, E.L.C., 2015. Ichnology of deglaciation deposits from the Upper Carboniferous Rio do Sul Formation (Itarar Group, Paran Basin) at central-east Santa Catarina State (southern Brazil). J. South Am. Earth Sci. 63, 137148. doi.org/10.1016/j.jsames.2015.07.008
[18] Lima, J.H.D., Minter, N.J., Netto, R.G., 2017. Insights from functional morphology and neoichnology for determining tracemakers: a case study of the reconstruction of an ancient glacial arthropod-dominated fauna. Lethaia 50, 576590. doi.org/10.1111/let.12214
[19] Netto, R.G., Corra, C.G., Lima, J.H.D., Sedorko, D., Villegas-Martn, J., 2021. Deciphering myriapoda population dynamics during Gondwana deglaciation cycles through neoichnology. J. South Am. Earth Sci. 109, 103247. doi.org/10.1016/j.jsames.2021.103247
[20] Trewin, N.H., 2000. The inchnogenus Undichna, with examples from the Permian of the Falkland Islands. Palaeontology 43, 979997. doi.org/10.1111/1475-4983.00158
[21] Dias-Fabrcio, M.E., Guerra-Sommer, M., 1989. Sntese dos Estudos Icnolgicos do Grupo Itarar no Rio Grande do Sul. Pesqui. em Geocincias 22, 7188. doi.org/10.22456/1807-9806.21458
[22] Peralta, S.H., Contreras, V.H., Milana, J.P., 1997. Trazas fsiles del tramo superior de la Formacin Hoyada Verde (Carbonfero Medio), Precordillera occidental de San Juan, Barreal, San Juan, Argentina, in: II Jornadas de Geologia de Precordillera, San Juan. San Juan, Puerto Rico, pp. 146151.
[23] Nogueira, M.S., Netto, R.G., 2001. Icnofauna da Formao Rio do Sul (Grupo Itarar, Permiano da Bacia do Paran) na Pedreira Ita-Itauna, Santa Catarina, Brasil. Acta Geol. Leopoldensia XXIV, 397406.
[24] Paredes, M.A., 2007. Distinguiendo entre ambientes estuarinos y lacustres mediante el uso de trazas fsiles: un ejemplo del Carbonfero Tardo de la Cuenca de San Rafael, Argentina. Universidad Nacional de la Pampa, Santa Rosa (La Pampa), Argentina.
[25] Aceolaza, F.G., 1978. Trazas Fosiles de la Formacion Patquia en el Bordo Atravesado, Sierra de Famatina, la Rioja. Acta Geol. Lilloana XV, 1929.
[26] Skompski, S., 1991. Trace fossils in the deposits of ice-dammed lakes. Kwartalknik Geologiczny 35, 119130.

Description of the Data and file structure

Appendix_S1.xlsx: The raw dataset of 173 specimens analysed, divided into sheets with: 'Data' (raw data), 'Umfolozia' (data only from the Umfolozia morphological group), 'Warvichnium' (data only from the Warvichnium morphological group), 'Exploratory Data' (data with minimum, maximum, mean, and standard deviation), 'Legend' (with acronyms used in the 'data' sheet), and 'References' (with used references for measurements). All measurements are in millimetres (mm). NA = no values.

Appendix_S2.docx: Specimen photos (Figs S1-S12)

Appendix_S3.mp4: Deep sea isopods (video) - Courtesy of NOAA Office of Ocean Exploration and Research, produced by Kip Evans, funded by National Geographic (Project: Sustainable Seas Expeditions) - RF

Appendix_S4.mp4: Dive 01: Giant isopod (video) - Courtesy of NOAA Office of Ocean Exploration and Research (Project: Gulf of Mexico 2017 expedition) - RF

Appendix_S5.mp4: Dive 11: Winner, winner, fish head dinner (video) - Courtesy of NOAA Office of Ocean Exploration and Research (Project: 2019 Southeastern U.S. Deep-sea exploration) - RF

Appendix_S6.docx: List of occurrences

Appendix_S7.rar: R Script .rar file including,

umfo_warv.R: Script in R with the functions that were used in the paper

measurements_um_wa.xlsx: Data with modified header for reading in R

umfolozia.csv: Umfolozia data

warvichnium.csv: Warvichnium data

Appendix_S8.docx: Results of Kruskal-Wallis and Wilcoxon-Mann-Whitney statistical tests

<br>
Legend from 'Appendix_S1.xlsx' and 'measurements_um_wa.xlsx'

  • Acronym Description
  • TWEW Trackway external width
  • MTEW Middle track external width
  • ITEW Internal track external width
  • IIL Internal imprint length
  • MIAM Middle imprint angle in relation to midline
  • ERW External imprint width
  • MISL Middle imprint series length
  • TRW Track row width
  • SL Series length
  • TAM Track imprint series angle to midline
  • IW Internal width
  • ITW Internal imprint width
  • ESL External imprint series length
  • ETRW External track row imprint width
  • REIW REIW = TWEW / IW
  • RESL RESL = TWEW / SL
  • REELS REELS = TWEW / ESL
  • RTWIT RTWIT = TWEW / ITEW
  • Us Umfolozia sinuosa
  • Ur Umfolozia riojana
  • Ut Umfolozia terere
  • Wu Warvichnium ulbrichi
  • Is Irichnus saltatorius
  • Ip Irichnus paripinnatus
  • ichnosp Ichnospecimen
  • ref Reference
  • morph Morphology of the ichnospecimen
  • PL Pleistocene
  • PL-HL Pleistocene - Holocene
  • PE Permian
  • EP Early Permian
  • LC Late Carboniferous
  • MC Middle Carboniferous
  • ED Early Devonian
  • ?LS ?Late Silurian

Sharing/access Information

Links to other publicly accessible locations of the data: https://github.com/gabrielbarea

Script author: Gabriel E. B. de Barros

Paper Information

A review of the glacial environment arthropod trace fossils Umfolozia and Warvichnium with the description of new ichnotaxa

Gabriel E. B. de Barros; Bernardo de C. P. e M. Peixoto; Joo H. D. Lima ; Nicholas J. Minter; Daniel Sedorko

gbareabarros@gmail.com (G.E.B. de Barros, Corresponding author)

Methods

The data was collected from previous publications and new material collected samples that are housed in the Coleção Arqueológica e Paleontológica (CAP) at the Federal University of São Carlos (UFSCar – Sorocaba campus, São Paulo, Brazil) at the Laboratório de Paleobiologia e Astrobiologia (LPA) under codes CAP/1D- and CAP/1H-. We processed the data using Zeiss ZEN 3.5 Lite (Blue Edition) software and later in RStudio.

The archives are uploaded as follows:

Appendix S1. A Dataset of the 173 specimens analysed.

Appendix S2. Specimen photos (Figs. S1–S12):

            Fig. S1. Umfolozia terere (CAP/1D-165).

Fig. S2. Umfolozia terere (CAP/1D-28).

Fig. S3. Umfolozia terere and ?Irichnus saltatorius (CAP/1D-162).

Fig. S4. Irichnus saltatorius (CAP/1D-134).

Fig. S5. Irichnus saltatorius (CAP/1D-144).

Fig. S6. Irichnus saltatorius (CAP/1D-145).

Fig. S7. Irichnus saltatorius (CAP/1D-168).

Fig. S8. Irichnus saltatorius (CAP/1D-398).

Fig. S9. Irichnus paripinnatus and Umfolozia terere (CAP/1D-29).

Fig. S10. Irichnus paripinnatus and Umfolozia terere (CAP/1D-51).

Fig. S11. Warvichnium ulbrichi (FG 290/6).

Fig. S12. Irichnus saltatorius (FG 290/26).

Appendix S3. List of occurrences (Tables S1–S6):

            Table S1. Umfolozia sinuosa Savage, 1971.

            Table S2. Umfolozia riojana (Aceñolaza, 1978) nom. rev. emend.

            Table S3. Umfolozia terere isp. nov.

            Table S4. Warvichnium ulbrichi Walter, 1985.

            Table S5. Irichnus saltatorius Skompski, 1991.

            Table S6. Irichnus paripinnatus isp. nov.

Appendix S4. Results of the Kruskal-Wallis and Wilcoxon-Mann-Whitney tests (Tables S7–S8):

            Table S7. Umfolozia

            Table S8. Warvichnium+Irichnus

Appendix S5. R Script.

Appendix S6. Deep sea isopods (video).

Appendix S7. Dive 01: Giant isopod (video).

Appendix S8. Dive 11: Winner, winner, fish head dinner (video).

Usage notes

R software (version 4.2.0 or above).

Funding

Coordenação de Aperfeicoamento de Pessoal de Nível Superior, Award: 88887.569703/2020–00

National Council for Scientific and Technological Development, Award: 141220/2018-0

National Council for Scientific and Technological Development, Award: 306493/2022-5

Coordenação de Aperfeicoamento de Pessoal de Nível Superior, Award: 88887.799772/2022-00