Skip to main content
Dryad

Global record-breaking recurrence rates indicates more widespread and intense surface air temperature and precipitation extremes

Data files

Aug 06, 2024 version files 498.52 MB

Abstract

We analysed the global geographical characteristics of how extreme surface air temperature and rainfall have evolved, based on the recurrence rate of record-breaking events, and found hot spots with anomalously high as well as regions with anomalously low numbers of record-breaking events. The recurrence rate was defined as the proportion of the actual count of record-breaking events over time to the number expected in a hypothetically stable climate. In a stable climate, the data is independent and identically distributed (iid) if the data is sampled at intervals that makes the autocorrelation between data points negligible. Anomalous recurrence rates indicate shifts in the tails of statistical distributions, and our analysis of record-high annual mean surface air temperatures revealed highest recurrence rates in the tropics, as opposed to the polar regions with the fastest warming. We present new evidence for extremely hot years becoming more common and widespread over the 1950-2023 period, based on recurrence rates as well as the global surface area fraction with daily mean surface air temperature exceeding 30°C and 40°C. A similar analysis for annual total precipitation highlights regions with increasingly more extreme annual precipitation as well as record-low annual precipitation typically associated with drought conditions. A multi-model ensemble of 306 runs with global climate models (CMIP6 SSP2-45) reproduced the statistics of record-breaking high annual mean surface air temperatures, but there were some differences with the reanalysis on annual total precipitation record-breaking recurrence rates. The global climate model simulations suggested a slightly altered geographical pattern for record-breaking annual precipitation recurrence rates, especially over parts of the Arctic.