Skip to main content
Dryad

Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod

Abstract

The role of epistasis in adaptive evolution has remained an unresolved problem dating back to the Evolutionary Synthesis. This role is now being revisited due to its relevance for polygenic adaptation. In the absence of epistasis, polygenic adaptation is predicted to result in non-parallel evolution, because repeated selection could act on subsets of effectively redundant alleles. However, positive epistatic interactions among adaptive alleles would make the alleles non-redundant and selection for particular allelic combinations could drive parallel evolution. The inability to address this fundamental question might arise from traditional approaches lacking the power to capture the genomic architecture and dynamics of polygenic adaptation. To address this problem, we employed a replicated and controlled evolution experiment using the copepod Eurytemora affinis to elucidate the evolutionary response architecture to rapid salinity decline, a predicted consequence of global climate change in higher latitudes. Based on time-resolved pooled whole-genome sequencing, we uncovered a remarkably parallel response, despite polygenic adaptation involving over 1000 loci across ten replicate selection lines. Interestingly, single-nucleotide polymorphism (SNP) frequencies converged during the experiment, far beyond expectations, resulting in replicate lines sharing 93.1% of selected alleles. Using simulations, we found that this polygenic parallelism was consistent with synergistic epistasis among alleles responding in concert across replicate lines, a phenomenon that may be common for selection on complex physiological traits. Furthermore, we found that the same SNPs with signatures of selection in the laboratory also exhibited signatures of selection across a natural salinity gradient in the Baltic Sea. Our study provides the first experimental evidence that polygenic adaptation can actually be highly repeatable at the genomic level, given the presence of synergistic epistasis among the loci under selection.