Global lake surface water temperature layers
Data files
Nov 01, 2022 version files 83.78 GB
-
01_lswt_max_1km.tif
950.80 MB
-
01_lswt_mean_1km.tif
948.42 MB
-
01_lswt_min_1km.tif
954.52 MB
-
01_rfpreds_high_highres.tif
965.18 MB
-
01_rfpreds_low_highres.tif
960.17 MB
-
01_rfpreds_mean_highres.tif
965.45 MB
-
02_lswt_max_1km.tif
948.05 MB
-
02_lswt_mean_1km.tif
945.41 MB
-
02_lswt_min_1km.tif
940.67 MB
-
02_rfpreds_high_highres.tif
958.81 MB
-
02_rfpreds_low_highres.tif
941.20 MB
-
02_rfpreds_mean_highres.tif
959.93 MB
-
03_lswt_max_1km.tif
946.27 MB
-
03_lswt_mean_1km.tif
934.92 MB
-
03_lswt_min_1km.tif
946.44 MB
-
03_rfpreds_high_highres.tif
963.45 MB
-
03_rfpreds_low_highres.tif
958.89 MB
-
03_rfpreds_mean_highres.tif
944.76 MB
-
04_lswt_max_1km.tif
950.72 MB
-
04_lswt_mean_1km.tif
951.48 MB
-
04_lswt_min_1km.tif
960.99 MB
-
04_rfpreds_high_highres.tif
990.52 MB
-
04_rfpreds_low_highres.tif
992.03 MB
-
04_rfpreds_mean_highres.tif
990.41 MB
-
05_lswt_max_1km.tif
950.18 MB
-
05_lswt_mean_1km.tif
953.39 MB
-
05_lswt_min_1km.tif
967.93 MB
-
05_rfpreds_high_highres.tif
1.01 GB
-
05_rfpreds_low_highres.tif
1.01 GB
-
05_rfpreds_mean_highres.tif
1.01 GB
-
06_lswt_max_1km.tif
941.20 MB
-
06_lswt_mean_1km.tif
948.18 MB
-
06_lswt_min_1km.tif
960.30 MB
-
06_rfpreds_high_highres.tif
1.02 GB
-
06_rfpreds_low_highres.tif
1.01 GB
-
06_rfpreds_mean_highres.tif
1.02 GB
-
07_lswt_max_1km.tif
941.81 MB
-
07_lswt_mean_1km.tif
945 MB
-
07_lswt_min_1km.tif
956.01 MB
-
07_rfpreds_high_highres.tif
1.02 GB
-
07_rfpreds_low_highres.tif
1.01 GB
-
07_rfpreds_mean_highres.tif
1.03 GB
-
08_lswt_max_1km.tif
937.85 MB
-
08_lswt_mean_1km.tif
942.32 MB
-
08_lswt_min_1km.tif
956.40 MB
-
08_rfpreds_high_highres.tif
1.01 GB
-
08_rfpreds_low_highres.tif
1.02 GB
-
08_rfpreds_mean_highres.tif
1.01 GB
-
09_lswt_max_1km.tif
937.75 MB
-
09_lswt_mean_1km.tif
945.94 MB
-
09_lswt_min_1km.tif
965.49 MB
-
09_rfpreds_high_highres.tif
987.11 MB
-
09_rfpreds_low_highres.tif
1.01 GB
-
09_rfpreds_mean_highres.tif
996.02 MB
-
1_AOA_1km.tif
47.40 MB
-
10_AOA_1km.tif
47.59 MB
-
10_lswt_max_1km.tif
953.29 MB
-
10_lswt_mean_1km.tif
956.42 MB
-
10_lswt_min_1km.tif
971.93 MB
-
10_rfpreds_high_highres.tif
996.73 MB
-
10_rfpreds_low_highres.tif
996.36 MB
-
10_rfpreds_mean_highres.tif
989.87 MB
-
11_AOA_1km.tif
48.13 MB
-
11_lswt_max_1km.tif
954.46 MB
-
11_lswt_mean_1km.tif
955.91 MB
-
11_lswt_min_1km.tif
966.17 MB
-
11_rfpreds_high_highres.tif
987.30 MB
-
11_rfpreds_low_highres.tif
979.86 MB
-
11_rfpreds_mean_highres.tif
984.80 MB
-
12_AOA_1km.tif
47.65 MB
-
12_lswt_max_1km.tif
957.11 MB
-
12_lswt_mean_1km.tif
950.23 MB
-
12_lswt_min_1km.tif
963.22 MB
-
12_rfpreds_high_highres.tif
983.44 MB
-
12_rfpreds_low_highres.tif
973.40 MB
-
12_rfpreds_mean_highres.tif
968.58 MB
-
2_AOA_1km.tif
46.89 MB
-
3_AOA_1km.tif
45.19 MB
-
4_AOA_1km.tif
46.55 MB
-
5_AOA_1km.tif
45.79 MB
-
6_AOA_1km.tif
45.77 MB
-
7_AOA_1km.tif
46.08 MB
-
8_AOA_1km.tif
46.34 MB
-
9_AOA_1km.tif
45.53 MB
-
AOA_mean_1km.tif
95.92 MB
-
LakeTemps_Code.zip
1.61 GB
-
LBIO1_annual_mean_T.tiff
963.54 MB
-
LBIO10_mean_T_warmest_quarter.tiff
944.84 MB
-
LBIO11_mean_T_coldest_quarter.tiff
985.41 MB
-
LBIO18_precipitation_warmest_quarter.tiff
563.41 MB
-
LBIO19_precipitation_coldest_quarter.tiff
505.86 MB
-
LBIO2_mean_diurnal_range.tiff
971.79 MB
-
LBIO3_isothermality.tiff
966.43 MB
-
LBIO4_temperature_seasonality.tiff
961.53 MB
-
LBIO5_max_T_warmest_month.tiff
932.65 MB
-
LBIO6_min_T_coldest_month.tiff
967.88 MB
-
LBIO7_temperature_annual_range.tiff
946.64 MB
-
LBIO8_mean_T_wettest_quarter.tiff
956.19 MB
-
LBIO9_mean_T_driest_quarter.tiff
982.20 MB
-
README_lswt_preds.txt
1.64 KB
Abstract
In modeling species distributions and population dynamics, spatially-interpolated climatic data are often used as proxies for real, on-the-ground measurements. In shallow freshwater systems, this practice may be problematic as interpolations used for surface waters are generated from terrestrial sensor networks measuring air temperatures. Using these may therefore bias statistical estimates of species' environmental tolerances or population projections -- particularly among pleustonic and epilimnetic organisms. I used a global database of satellite-derived lake surface water temperatures (LSWT) to assess and correct for the statistical correspondence between air and LSWT as a function of atmospheric and topographic predictors, resulting in the creation of monthly high-resolution global maps of air-LSWT offsets, corresponding uncertainty measures, and derived LSWT-based bioclimatic layers for use by the scientific community.
Usage notes
All files are in LZW-compressed geoTIFF formats, some of which include interleaved layers. Many GIS tools can work with these file types, including in R (terra & raster packages), Python (gdal, rasterio, georaster, & geotiff packages), and ArcGIS.