Skip to main content
Dryad

Data from: Magnitude and direction of stream-forest community interactions change with time scale

Data files

Mar 18, 2020 version files 1.14 MB

Abstract

Networks of direct and indirect biotic interactions underpin the complex dynamics and stability of ecological systems, yet experimental and theoretical studies often yield conflicting evidence regarding the direction (positive or negative) or magnitude of these interactions. We revisited pioneering datasets collected at the deciduous forested Horonai Stream and conducted ecosystem-level syntheses to demonstrate that the direction of direct and indirect interactions can change depending on the timescale of observation. Prior experimental studies showed that terrestrial prey that enter the stream from the adjacent forest caused positive indirect effects on aquatic invertebrates during summer by diverting fish consumption. Seasonal and annual estimates of secondary production and organic matter flows along food web pathway demonstrate that this seasonal input of terrestrial invertebrate prey increases production of certain fish species, reversing the indirect effect on aquatic invertebrates from positive at the seasonal time scale to negative at the annual time scale. Even though terrestrial invertebrate prey contributed 54% of the annual organic matter flux to fishes, primarily during summer, fish still consumed 98% of the aquatic invertebrate annual production, leading to top-down control that is not revealed in short-term experiments and demonstrating that aquatic prey may be a limiting resource for fishes. Changes in the direction or magnitude of interactions may be a key factor creating non-linear or stabilizing feedbacks in complex systems, and these dynamics can be revealed by merging experimental and comparative approaches at different scales.