Skip to main content
Dryad

Data from: Temporary thinning shock in previously shaded red spruce

Data files

Feb 23, 2023 version files 450.28 KB

Abstract

Silvicultural thinning can lead to rapid microclimatic changes for residual trees. Despite the benefits of decreased competition, thinning may induce “thinning shock” – temporary negative physiological responses as trees acclimate to new conditions. We examined the impact of thinning on the microclimate and physiology of residual, previously shaded red spruce (Picea rubens Sarg.) trees relative to non-thinned controls. Both daily maximum temperature and vapor pressure deficit increased post-thinning, with larger increases observed on hotter and drier days. In response to these environmental changes, we found clear evidence of physiological declines. At 1.7 weeks post thinning, we found a 0.59-MPa reduction in average midday water potential relative to control trees, which lasted for an additional 1.4 weeks. Thus, the trees in the thinning treatment were at or beyond published estimates of needle turgor loss. Thinning decreased photosynthetic efficiency of current-year needles by 3.8% after two weeks, and it declined by 1.3% per week for the remainder of the growing season. These results suggest that thinning shock occurs in red spruce, a shade-adapted, climate-sensitive species. Thinning shock may contribute to the lagged growth responses commonly observed post-thinning, and these effects may be more extreme in novel future climates.