Skip to main content
Dryad

Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides

Abstract

This dataset contains data from two-part greenhouse experiments described in the paper: “Vian H. Mohammad, Colin P. Osborne & Robert P. Freckleton (2022) Drought exposure leads to rapid acquisition and inheritance of herbicide resistance in the weed Alopecurus myosuroides”. 

Globally, herbicide resistance in weeds poses a threat to food security. Resistance evolves rapidly through the co-option of a suite of physiological mechanisms that evolved to allow plants to survive environmental stress. Consequently, we hypothesize that stress tolerance and herbicide resistance are functionally linked. We address two questions: (i) does exposure to stress in a parental generation promote the evolution of resistance in the offspring? (ii) Is such evolution mediated through non-genetic mechanisms? We exposed individuals of a grass weed to drought and tested whether this resulted in herbicide resistance in the first generation (F1).

In the first experiment (“Exposure to stress in a parental generation promote the evolution of resistance in the offspring”), the effect of three levels of drought ("none, medium and high") is studied in five different nive populations of black-grass. Plant height, above ground biomass and seed weight were measured to estimate the influence of drought treatments on the phenotype. In addition, surviving and dead plants were assessed to evaluate the tolerance of A. myosuroides to drought stress. The drought treatments were initiated 30 days after emergence. In the herbicide assay experiment, the seedlings of F1 of all populations were sprayed with fenoxaprop-P-ethyl herbicide (as “Puma Super” – 69 g a.i. L−1, Bayer Crop Science) using two different doses, a lethal dose (40 g a.i. h−1) and sub-lethal dose (20 g a.i. h−1). 28 days after herbicide application, dead and damaged plants were assessed. Surviving plants were categorised in two ways to account for the differential outcomes of exposure to herbicide: plants were categorised as ‘surviving’ if they showed no visible effects of herbicide exposure, or ‘damaged’ if they survived but with obvious effects on above ground tissues.

In the second experiment ("The role of non-genetic inheritance"), the effect of two levels of drought ("none and high") is studied in 15 different populations of cloned black-grass plants. Each plant was divided into two clones. Plants were cloned to produce two identical seedlings for the investigation of the role of epigenetic mechanisms in herbicide resistance evolution. After 14 days the cloned plants were re-potted and allowed to establish for one week before initiating a drought stress treatment. One set of the cloned plants was exposed to drought and the second set was grown under well-watered conditions. Plant height, above ground biomass and seed weight were measured, in addition to the number of surviving and dead plants. The herbicide assay was carried out using the five populations that possessed a high rate of viability and germination rate in both treatments (“none” and “high” drought). At the 3-4 leaves stage in September 2018, the seedlings were sprayed with fenoxaprop-p-ethyl herbicide (“Puma Super” – 69 g a.i. L−1, Bayer Crop Science) using two different doses as previously described. 28 days after herbicide application (October 2018) dead and damaged plants were assessed as described above.

In terms of both survival and dry mass, we find enhanced resistance to herbicide in the F1 plants when the parents had been exposed to drought. Our results suggest that exposure of weeds to drought can confer herbicide resistance in subsequent generations and that the mechanism conferring heritability of herbicide resistance may be non-genetic.