Skip to main content
Dryad

Mobile Brain-Body Imaging (MoBI) dual-tasking datasets (response inhibition while walking): Older adults

Data files

Feb 12, 2024 version files 226.23 GB

Abstract

Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation (P3). These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy ‘paradoxically’ improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify ‘super-agers’, or individuals at risk for cognitive decline due to aging or neurodegenerative disease.