Skip to main content
Dryad

Data from: Rise and diversification of chondrichthyans in the Paleozoic

Data files

Jan 09, 2024 version files 992.15 KB

Abstract

The Paleozoic represents a key time interval in the origins and early diversification of chondrichthyans (cartilaginous fishes), but their diversity and macroevolution are largely obscured by heterogenous spatial and temporal sampling. The predominantly cartilaginous skeletons of chondrichthyans pose an additional limitation on their preservation potential and hence on the quality of their fossil record. Here, we use a newly compiled genus-level dataset and the application of sampling standardization methods to analyze global total-chondrichthyan diversity dynamics through time from their first appearance in the Ordovician through to the end of the Permian. Subsampled estimates of chondrichthyan genus richness were initially low in the Ordovician and Silurian but increased substantially in the early Devonian. Richness reached its maximum in the middle Carboniferous before dropping across the Carboniferous/Permian boundary and gradually decreasing throughout the Permian. Sampling is higher in both the Devonian and Carboniferous compared with the Silurian and most of the Permian stages. Shark-like scales from the Ordovician are too limited to allow for some of the subsampling techniques. Our results detect two Paleozoic radiations in chondrichthyan diversity: the first in the earliest Devonian, led by acanthodians (stem-group chondrichthyans), which then decline rapidly by the late Devonian, and the second in the earliest Carboniferous, led by holocephalans, which increase greatly in richness across the Devonian-Carboniferous boundary. Dispersal of chondrichthyans, specifically holocephalans, into deeper water environments may reflect a niche expansion following the faunal displacement in the aftermath of the Hangenberg extinction event at the end of the Devonian.