Data Guide for Protocol-Dependence and State Variables in the Force-Moment Ensemble E. S. Bililign, J. E. Kollmer, & K. E. Daniels. Physical Review Letters.

File Location The files associated with these experiments are located in the following zipped directories:

1. Biaxial: DataDryad biaxial.tgz

2. Uniaxial: DataDryad • uniaxial.tgz

3. Shear: DataDryad → shear.tgz¹

Additionally, figures from the paper may be found in DataDryad figures.tgz in both .fig and .eps format.

File Structure Within each directory, the *j*th frame of the *i*th experiment has two associated files:

1. Forces: img[i]-[j]solved.mat; output from PEGS²

2. Volumes: img[i]-[j]voro.txt; output from voro++3

Force data is recorded as a Matlab structure of dimension $1 \times N$ where N is the number of particles observed in the system. The useful fields are detailed in the table below:

Name	Description
id	particle label; not consistent between frames
х, у	x and y position coordinates in pixels (5.037 pixels/mm)
r, rm	particle radii in pixels and meters, respectively
Z	number of force-sustaining contacts
g2	square of the intensity gradient, a measure of net stress on a particle
forces, betas, alphas	three $(z \times 1)$ vectors of force magnitudes (f) , and angles (β, α) , respectively
neighbors	$(z \times 1)$ vector of neighbor indices; indices $-1, -2, -3, -4$ refer to bounding walls
fitError	measure of least-squares error in fringe fitting

¹In the notation of the paper, (i=1, j=1-367) and (i=2, j=1-379) are shear^A and (i=2, j=380-821) are shear^B.

²Code available at: https://github.com/jekollmer/PEGS/, data analyzed with v. 2016.09.28

³Code available at: http://math.lbl.gov/voro++/, data analyzed with v. 0.3.1

The force on a particle due to a neighbor is parametrized by (f, α, β) , as represented by Figure 1. Then, the vector force on a particle from a single contact is

$$\vec{F} = f \cos(\alpha + \beta)\hat{x} + f \sin(\alpha + \beta)\hat{y},$$

where the normal and tangential components of the force are:

$$F_n = f \cos(\alpha),$$

 $F_t = f \sin(\alpha).$

Volume data is stored as a text file N rows and columns detailed in the table below:

Column	Description
1	particle label; matches with associated force id
2-4	position coordinates, (x, y, z) , in pixels
5	particle radii in pixels
6	Voronoi cell volume in square pixels
7-	list of neighboring Voronoi cells; indices $-1, -2, -3, -4$ refer to bounding walls

Figure 1: Simplified force diagram for a single force of magnitude f acting on a particle, defined by two angles α and β .