Transgenerational plasticity and the capacity to adapt to low salinity in the eastern oyster, Crassostrea virginica
Data files
May 17, 2021 version files 453.69 KB
Abstract
Salinity conditions in oyster breeding grounds in the Gulf of Mexico are expected to drastically change due to increased precipitation from climate change and anthropogenic changes to local hydrology. We determined the capacity of the eastern oyster, Crassostrea virginica, to adapt via standing genetic variation or acclimate through transgenerational plasticity. We outplanted oysters to either a low or medium salinity site in Louisiana for two years. We then crossed adult parents using a North Carolina II breeding design and measured body size and survival of larvae 5 dpf raised under low or ambient salinity. We found that transgenerational plasticity is unlikely to significantly contribute to low salinity tolerance since we did not observe increased growth or survival in offspring reared in low salinity when their parents were also acclimated at a low salinity site. However, we detected genetic variation for body size, with an estimated heritability of 0.68 ± 0.25 (95% CI). This suggests there is ample genetic variation for this trait to evolve, and that evolutionary adaptation is a possible mechanism through which oysters will persist with future declines in salinity. The results of this experiment provide valuable insights into successfully breeding low salinity tolerance in this commercially important species.