Skip to main content
Dryad

Dataset for the transcriptome analysis of hippocampal subfields identifies gene expression profiles associated with long-term active place avoidance memory

Data files

Feb 10, 2020 version files 189.59 KB

Abstract

The hippocampus plays a critical role in storing and retrieving spatial information. By targeting the dorsal hippocampus and manipulating specific “candidate” molecules using pharmacological and genetic manipulations, we have previously discovered that long-term active place avoidance memory requires transient activation of particular molecules in dorsal hippocampus. These molecules include amongst others, the persistent kinases Ca-calmodulin kinase II (CaMKII) and the atypical protein kinase C isoform PKC iota/lambda for acquisition of the conditioned behavior, whereas persistent activation of the other atypical PKC, protein kinase M zeta (PKM zeta) is necessary for maintaining the memory for at least a month. It nonetheless remains unclear what other molecules and their interactions maintain active place avoidance long-term memory, and the candidate molecule approach is both impractical and inadequate to identify new candidates since there are so many to survey. Here we use a complementary approach to identify candidates by transcriptional profiling of hippocampus subregions after formation of the long-term active place avoidance memory. Interestingly, 24-h after conditioning and soon after expressing memory retention, immediate early genes were upregulated in the dentate gyrus but not Ammon’s horn of the memory expressing group. In addition to determining what genes are differentially regulated during memory maintenance, we performed an integrative, unbiased survey of the genes with expression levels that covary with behavioral measures of active place avoidance memory persistence. Gene Ontology analysis of the most differentially expressed genes shows that active place avoidance memory is associated with activation of transcription and synaptic differentiation in dentate gyrus but not CA3 or CA1, whereas hypothesis-driven candidate molecule analyses identified insignificant changes in the expression of many LTP-associated molecules in the various hippocampal subfields, nor did they covary with active place avoidance memory expression, ruling out strong transcriptional regulation but not translational regulation, which was not investigated. These findings and the data set establish an unbiased resource to screen for molecules and evaluate hypotheses for the molecular components of a hippocampus-dependent, long-term active place avoidance memory.