Skip to main content
Dryad logo

Pictures of unmanned aerial vehicle (UAV) experiments on testing paper

Citation

Liao, Shuting et al. (2021), Pictures of unmanned aerial vehicle (UAV) experiments on testing paper, Dryad, Dataset, https://doi.org/10.25338/B8WG9S

Abstract

Our computational developments and analyses on experimental images are designed to evaluate the effectiveness of chemical spraying via unmanned aerial vehicle (UAV). Our evaluations are in accord with the two perspectives of color-complexity: color variety within a color system and color distributional geometry on an image. First, by working within RGB and HSV color systems, we develop a new color-identification algorithm relying on highly associative relations among three color-coordinates to lead us to exhaustively identify all targeted color-pixels. A color-dot is then identified as one isolated network of connected color-pixel. All identified color-dots vary in shapes and sizes within each image. Such a pixel-based computing algorithm is shown robustly and efficiently accommodating heterogeneity due to shaded regions and lighting conditions. Secondly, all color-dots with varying sizes are categorized into three categories. Since the number of small color-dot is rather large, we spatially divide the entire image into a 2D lattice of rectangular. As such, each rectangle becomes a collective of color-dots of various sizes and is classified with respect to its color-dots intensity. We progressively construct a series of minimum spanning trees (MST) as multiscale 2D distributional spatial geometries in a decreasing-intensity fashion. We extract the distributions of distances among connected rectangle-nodes in the observed MST and simulated MSTs generated under the spatial uniformness assumption. We devise a new algorithm for testing 2D spatial uniformness based on a Hierarchical clustering tree upon all involving MSTs. This new tree-based p-value evaluation has the capacity to become exact.