Skip to main content
Dryad

Sulfate radical from irradiated aqueous sulfate solutions

Data files

Jul 15, 2022 version files 4.52 KB

Abstract

The sulfate anion radical (SO4• –) is known to be formed in the autoxidation chain of sulfur dioxide, and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO3 radicals, or iron. Here we report a new source of SO4• –, from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory ultraviolet radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO4• – + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO4• – radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation is nearly irrelevant. The reaction proceeds at pH 1-6, implicating both bisulfate and sulfate in the formation of photoinduced SO4• –. Certain aromatic species may further accelerate the reaction through synergy. This new reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms.