Skip to main content
Dryad

Data from: Attacks on genetic privacy via uploads to genealogical databases

Data files

Jan 07, 2020 version files 122.76 MB

Abstract

Direct-to-consumer (DTC) genetics services are increasingly popular for genetic genealogy, with tens of millions of customers as of 2019. Several DTC genealogy services allow users to upload their own genetic datasets in order to search for genetic relatives. The statement that a user's uploaded genome shares one or more segments in common with that of a target person in the database---that is, that the two genomes share one or more regions identical by state (IBS)---reveals some information about the genotypes of the target person, particularly if the chromosomal locations of IBS matches are shared with the uploader. Here, we describe several methods by which an adversary who wants to learn the genotypes of people in the database can do so by uploading multiple datasets. Depending on the methods used for IBS matching and the information about IBS segments returned to the user, substantial information about users' genotypes can be revealed with a few hundred uploaded datasets. For example, using a method we call IBS tiling, we estimate that an adversary who uploads approximately 900 publicly available genomes could recover at least one allele at SNP sites across up to 82% of the genome of a median person of European ancestries. In databases that detect IBS segments using unphased genotypes, approximately 100 uploads of falsified datasets can reveal enough genetic information to allow accurate genome-wide imputation of every person in the database. We provide simple-to-implement suggestions that will prevent the exploits we describe and discuss our results in light of recent trends in genetic privacy, including the recent use of uploads to DTC genetic genealogy services by law enforcement.