Geographical variables of invasive Mikania micrantha populations
Data files
Aug 27, 2022 version files 3.97 KB
-
Mikania_Geo_variables.csv
-
READ_Mikania_Geo_variables.txt
Abstract
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using Transposon DisplayTD) and Transposon Methylation Display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE-based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty-five transposon-inserted genes were sequenced and homology-based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE-associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.