Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission
Data files
Dec 06, 2022 version files 81.88 GB
-
A002.bam
-
A003.bam
-
A006.bam
-
A008.bam
-
A009.bam
-
A011.bam
-
A013.bam
-
A016.bam
-
A018.bam
-
A020.bam
-
A022.bam
-
A023.bam
-
A025.bam
-
A027.bam
-
A028.bam
-
A031.bam
-
A033.bam
-
A041.bam
-
A043.bam
-
A046.bam
-
A051.bam
-
A053.bam
-
A054.bam
-
A058.bam
-
A060.bam
-
A062.bam
-
A063.bam
-
A066.bam
-
A068.bam
-
A070.bam
-
A072.bam
-
A074.bam
-
A076.bam
-
A078.bam
-
A080.bam
-
A082.bam
-
A083.bam
-
A086.bam
-
A088.bam
-
A090.bam
-
A091.bam
-
A101.bam
-
A104.bam
-
A107.bam
-
A110.bam
-
A112.bam
-
A116.bam
-
A120.bam
-
A130.bam
-
A133.bam
-
A135.bam
-
A137.bam
-
A139.bam
-
A140.bam
-
A143.bam
-
A158.bam
-
A161.bam
-
A178.bam
-
A180.bam
-
A184.bam
-
A192.bam
-
B002.bam
-
B004.bam
-
B005.bam
-
B007.bam
-
B009.bam
-
B011.bam
-
B013.bam
-
B015.bam
-
B017.bam
-
B020.bam
-
B022.bam
-
B023.bam
-
B025.bam
-
B027.bam
-
B029.bam
-
B030.bam
-
B032.bam
-
B033.bam
-
B035.bam
-
B038.bam
-
B039.bam
-
B041.bam
-
B043.bam
-
B045.bam
-
B047.bam
-
B050.bam
-
B051.bam
-
B053.bam
-
B055.bam
-
B059.bam
-
B062.bam
-
B064.bam
-
B066.bam
-
B068.bam
-
B069.bam
-
B072.bam
-
B073.bam
-
B076.bam
-
B077.bam
-
B080.bam
-
B082.bam
-
B084.bam
-
B085.bam
-
B088.bam
-
B090.bam
-
B101.bam
-
B103.bam
-
B106.bam
-
B107.bam
-
B113.bam
-
B116.bam
-
B119.bam
-
B125.bam
-
B130.bam
-
B133.bam
-
B140.bam
-
B146.bam
-
B150.bam
-
B155.bam
-
B158.bam
-
B163.bam
-
B168.bam
-
B171.bam
-
B179.bam
-
B182.bam
-
B186.bam
-
B188.bam
-
C003.bam
-
C007.bam
-
C009.bam
-
C011.bam
-
C016.bam
-
C017.bam
-
C019.bam
-
C021.bam
-
C026.bam
-
C027.bam
-
C030.bam
-
C031.bam
-
C034.bam
-
C035.bam
-
C037.bam
-
C039.bam
-
C041.bam
-
C043.bam
-
C047.bam
-
C049.bam
-
C053.bam
-
C055.bam
-
C058.bam
-
C059.bam
-
C061.bam
-
C063.bam
-
C065.bam
-
C102.bam
-
C104.bam
-
C108.bam
-
C110.bam
-
C112.bam
-
C117.bam
-
C120.bam
-
C126.bam
-
C129.bam
-
C132.bam
-
C139.bam
-
C141.bam
-
C145.bam
-
C146.bam
-
C149.bam
-
C152.bam
-
C155.bam
-
C158.bam
-
C160.bam
-
C163.bam
-
C166.bam
-
D002.bam
-
D003.bam
-
D005.bam
-
D007.bam
-
D009.bam
-
D012.bam
-
D014.bam
-
D016.bam
-
D017.bam
-
D019.bam
-
D021.bam
-
D023.bam
-
D026.bam
-
D027.bam
-
D033.bam
-
D035.bam
-
D037.bam
-
D039.bam
-
D042.bam
-
D044.bam
-
D047.bam
-
D049.bam
-
D051.bam
-
D053.bam
-
D056.bam
-
D057.bam
-
D059.bam
-
D061.bam
-
D063.bam
-
D069.bam
-
D071.bam
-
D075.bam
-
D078.bam
-
D079.bam
-
D082.bam
-
D084.bam
-
D086.bam
-
D089.bam
-
D092.bam
-
D101.bam
-
D107.bam
-
D111.bam
-
D113.bam
-
D117.bam
-
D120.bam
-
D125.bam
-
D129.bam
-
D131.bam
-
D132.bam
-
D136.bam
-
D140.bam
-
D144.bam
-
D150.bam
-
D155.bam
-
D161.bam
-
D167.bam
-
D168.bam
-
D174.bam
-
D175.bam
-
D181.bam
-
D186.bam
-
D187.bam
-
D191.bam
-
meta.txt
-
README.txt
Abstract
Dispersal is critical for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease-transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously described. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localized intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright’s neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.