Skip to main content
Dryad

The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein

Data files

Jun 25, 2021 version files 1.54 MB
Sep 28, 2021 version files 1.37 MB

Abstract

A rapid detection method for SARS-CoV-2 spike protein is essential for control of COVID19. We investigated various combinations of engineered nanobodies in a sandwich ELISA to detect the Spike protein of SARS-CoV-2. We have identified an optimal combination of nanobodies. These were selectively functionalised to further improve antigen capture. This dataset contains data from ELISA experiments described in the manuscript.                                                                                                                                          

Plate coating of nanobodies for ELISA by passive adsorption vs biotinylation was compared. A series of nanobody pairings (two cluster 2 ACE2-binding epitope and two cluster 1 CR3022 epitope) were screened for optimum sensitivity. The optimal pair were then tested against a series of SARS-COV-2 antigens: recombinant spike 1 protein; recombinant receceptor binding domain (RBD); pseudotyped HIV-1 and heat-empigen inactivated SARS-CoV-2 virus. X-ray irradiated SARS-CoV-2 was also tested. Sensitivity to these antigens was compared with nanobodies biotinylated a) site-selectively and b) in a non-specific stochastic manner. Batch-to-batch viral variation and effects of inactivating agents were investigated. Limit of detection was compared against delta and beta viral mutants. Combining optimal nanobody pairing and site-selective biotinylation, we observed a limit of detection of 147 pg/mL for Spike protein; 33 pg/mL for RBD; 16 TCID50/mL of pseudovirus and 15 ffu/mL of heat-Empigen inactivated SARS-CoV-2. The pairing also showed sensitivity towards delta variant. We have demonstrated the use and sensitivity of nanobodies in ELISA by detection of recombinant and viral SARS-CoV-2 antigens.