Skip to main content
Dryad logo

Data from: A new plant virus discovered by immunocapture of double stranded RNA; assessment of a novel approach for viral metagenomics studies

Citation

Blouin, Arnaud G. et al. (2016), Data from: A new plant virus discovered by immunocapture of double stranded RNA; assessment of a novel approach for viral metagenomics studies, Dryad, Dataset, https://doi.org/10.5061/dryad.0bg04

Abstract

Next-generation sequencing technologies enable the rapid identification of viral infection of diseased organisms. However, despite a consistent decrease in sequencing costs, it is difficult to justify their use in large-scale surveys without a virus sequence enrichment technique. As the majority of plant viruses have an RNA genome, a common approach is to extract the double-stranded RNA (dsRNA) replicative form, to enrich the replicating virus genetic material over the host background. The traditional dsRNA extraction is time-consuming and labour-intensive. We present an alternative method to enrich dsRNA from plant extracts using anti-dsRNA monoclonal antibodies in a pull-down assay. The extracted dsRNA can be amplified by reverse transcriptase–polymerase chain reaction and sequenced by next-generation sequencing. In our study, we have selected three distinct plant hosts: Māori potato (Solanum tuberosum), rengarenga (Arthropodium cirratum) and broadleaved dock (Rumex obtusifolius) representing a cultivated crop, a New Zealand-native ornamental plant and a weed, respectively. Of the sequence data obtained, 31–74% of the reads were of viral origin, and we identified five viruses including Potato virus Y and Potato virus S in potato; Turnip mosaic virus in rengarenga (a new host record); and in the dock sample Cherry leaf roll virus and a novel virus belonging to the genus Macluravirus. We believe that this new assay represents a significant opportunity to upscale virus ecology studies from environmental, primary industry and/or medical samples.

Usage Notes