Skip to main content
Dryad

Data from: Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs

Data files

Nov 24, 2015 version files 257.57 MB

Abstract

Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons’ livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an ‘immediate’ and ‘heritable’ epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species.