Skip to main content
Dryad logo

Data from: Methods for the quantitative comparison of molecular estimates of clade age and the fossil record


Clarke, Julia A.; Boyd, Clint A. (2014), Data from: Methods for the quantitative comparison of molecular estimates of clade age and the fossil record, Dryad, Dataset,


Approaches quantifying relative congruence, or incongruence, of molecular divergence estimates and the fossil record have been limited. Previously proposed methods are largely node specific, assessing incongruence at particular nodes for which both fossil data and molecular divergence estimates are available. These existing metrics, and other methods that quantify incongruence across topologies including entirely extinct clades, have so far not taken into account uncertainty surrounding both the divergence estimates and the ages of fossils. They have also treated molecular divergence estimates younger than previously assessed fossil minimum estimates of clade age as if they were the same as cases in which they were older. However, these cases are not the same. Recovered divergence dates younger than compared oldest known occurrences require prior hypotheses regarding the phylogenetic position of the compared fossil record and standard assumptions about the relative timing of morphological and molecular change to be incorrect. Older molecular dates, by contrast, are consistent with an incomplete fossil record and do not require prior assessments of the fossil record to be unreliable in some way. Here, we compare previous approaches and introduce two new descriptive metrics. Both metrics explicitly incorporate information on uncertainty by utilizing the 95% confidence intervals on estimated divergence dates and data on stratigraphic uncertainty concerning the age of the compared fossils. Metric scores are maximized when these ranges are overlapping. MDI (minimum divergence incongruence) discriminates between situations where molecular estimates are younger or older than known fossils reporting both absolute fit values and a number score for incompatible nodes. DIG range (divergence implied gap range) allows quantification of the minimum increase in implied missing fossil record induced by enforcing a given set of molecular-based estimates. These metrics are used together to describe the relationship between time trees and a set of fossil data, which we recommend be phylogenetically vetted and referred on the basis of apomorphy. Differences from previously proposed metrics and the utility of MDI and DIG range are illustrated in three empirical case studies from angiosperms, ostracods, and birds. These case studies also illustrate the ways in which MDI and DIG range may be used to assess time trees resultant from analyses varying in calibration regime, divergence dating approach or molecular sequence data analyzed.

Usage Notes


Austin Texas