Predicting species abundance by implementing the ecological niche theory
Data files
Sep 29, 2021 version files 2.90 MB
-
ASW_absence_thin1.csv
13.95 KB
-
ASW_presence_thin1.csv
4.56 KB
-
AUSFRYI_absence_thin1.csv
3.09 KB
-
AUSFRYI_presence_thin1.csv
6.24 KB
-
AUSPLUV_absence_thin1.csv
3.31 KB
-
AUSPLUV_presence_thin1.csv
4.64 KB
-
AUSROBU_absence_thin1.csv
1.56 KB
-
AUSROBU_presence_thin1.csv
9.11 KB
-
BHE_absence_thin1.csv
11.21 KB
-
BHE_presence_thin1.csv
13.28 KB
-
bird_density_by_site.csv
14.23 KB
-
BST_absence_thin1.csv
11.06 KB
-
BST_presence_thin1.csv
10.22 KB
-
CARLAEV_absence_thin1.csv
1.78 KB
-
CARLAEV_presence_thin1.csv
2.59 KB
-
CARRUBR_absence_thin1.csv
617 B
-
CARRUBR_presence_thin1.csv
5.94 KB
-
CC_absence_thin1.csv
10.60 KB
-
CC_presence_thin1.csv
11.49 KB
-
COPAENI_absence_thin1.csv
3.64 KB
-
COPAENI_presence_thin1.csv
2.22 KB
-
COPBOMB_absence_thin1.csv
3.95 KB
-
COPBOMB_presence_thin1.csv
1.28 KB
-
COPCONC_absence_thin1.csv
4.14 KB
-
COPCONC_presence_thin1.csv
841 B
-
COPEXIG_absence_thin1.csv
4.31 KB
-
COPEXIG_presence_thin1.csv
619 B
-
COPHOSM_absence_thin1.csv
4.12 KB
-
COPHOSM_presence_thin1.csv
1.31 KB
-
COPINFA_absence_thin1.csv
3.46 KB
-
COPINFA_presence_thin1.csv
3.25 KB
-
COPMONT_absence_thin1.csv
4.29 KB
-
COPMONT_presence_thin1.csv
450 B
-
COPNEGL_absence_thin1.csv
4.26 KB
-
COPNEGL_presence_thin1.csv
925 B
-
COPORNA_absence_thin1.csv
533 B
-
COPORNA_presence_thin1.csv
14.38 KB
-
EULTIGR_absence_thin1.csv
2.49 KB
-
EULTIGR_presence_thin1.csv
1.27 KB
-
frogs1_density_by_site.csv
4.28 KB
-
frogs2_density_by_site.csv
12.31 KB
-
frogs3_density_by_site.csv
11.71 KB
-
FW_absence_thin1.csv
12.18 KB
-
FW_presence_thin1.csv
8.53 KB
-
GLAFUSC_absence_thin1.csv
2.30 KB
-
GLAFUSC_presence_thin1.csv
1.33 KB
-
GLAMJOB_absence_thin1.csv
2.80 KB
-
GLAMJOB_presence_thin1.csv
393 B
-
GNYQUEE_absence_thin1.csv
1.30 KB
-
GNYQUEE_presence_thin1.csv
3.33 KB
-
GOLDBB_absence_thin1.csv
14.93 KB
-
GOLDBB_presence_thin1.csv
4.64 KB
-
LAMCOGG_absence_thin1.csv
866 B
-
LAMCOGG_presence_thin1.csv
3.32 KB
-
LAMROBE_absence_thin1.csv
2.80 KB
-
LAMROBE_presence_thin1.csv
615 B
-
LITGENI_absence_thin1.csv
253 B
-
LITGENI_presence_thin1.csv
8.32 KB
-
LITJUNG_absence_thin1.csv
1.61 KB
-
LITJUNG_presence_thin1.csv
4.92 KB
-
LITNANN_absence_thin1.csv
1.92 KB
-
LITNANN_presence_thin1.csv
4.61 KB
-
LITRHEO_absence_thin1.csv
1.81 KB
-
LITRHEO_presence_thin1.csv
6.11 KB
-
LITXANT_absence_thin1.csv
1.42 KB
-
LITXANT_presence_thin1.csv
3.51 KB
-
LSOWL_absence_thin1.csv
1.33 KB
-
LSOWL_presence_thin1.csv
3.79 KB
-
MACHE_absence_thin1.csv
12.08 KB
-
MACHE_presence_thin1.csv
14.49 KB
-
mammals_density_by_site.csv
19.61 KB
-
MIXCARB_absence_thin1.csv
2.47 KB
-
MIXCARB_presence_thin1.csv
512 B
-
MIXCOGG_absence_thin1.csv
2.22 KB
-
MIXCOGG_presence_thin1.csv
705 B
-
MIXSCHE_absence_thin1.csv
1.39 KB
-
MIXSCHE_presence_thin1.csv
4.83 KB
-
MTHORN_absence_thin1.csv
13.32 KB
-
MTHORN_presence_thin1.csv
8.43 KB
-
NYCDAYI_absence_thin1.csv
2.11 KB
-
NYCDAYI_presence_thin1.csv
4.84 KB
-
PMON_absence_thin1.csv
14.20 KB
-
PMON_presence_thin1.csv
7.21 KB
-
predictors.rar
2.32 MB
-
reptiles_density_by_site.csv
4.57 KB
-
reptiles1_density_by_site.csv
7.98 KB
-
ringtail_occurrences.csv
53.70 KB
-
SALCORN_absence_thin1.csv
781 B
-
SALCORN_presence_thin1.csv
4.91 KB
-
SAPBASI_absence_thin1.csv
559 B
-
SAPBASI_presence_thin1.csv
3.90 KB
-
SAPCZEC_absence_thin1.csv
2.05 KB
-
SAPCZEC_presence_thin1.csv
699 B
-
SAPLEWI_absence_thin1.csv
2.42 KB
-
SAPLEWI_presence_thin1.csv
224 B
-
SAPTETR_absence_thin1.csv
1.52 KB
-
SAPTETR_presence_thin1.csv
1.62 KB
-
spotlight_mix_density_by_site.csv
6.55 KB
-
TBBB_absence_thin1.csv
13.07 KB
-
TBBB_presence_thin1.csv
9.38 KB
-
VRIF_absence_thin1.csv
9.96 KB
-
VRIF_presence_thin1.csv
16.24 KB
Abstract
Species are not uniformly distributed across the landscape. For every species, there should be few favoured sites where abundance is high and many other sites of lower suitability where abundance is low. Consequently, local abundance could be thought of as a natural expression of species response to local conditions. The correlation between abundance and environmental suitability has been well documented, and a recent meta-analysis has suggested that this relationship could be a generality. Despite the importance and potential implication of the abundance-suitability relationship, its predictive power for meaningful extrapolations has been surprisingly poorly explored. In this study, we showed how a highly predictable trend can be extracted from the abundance-suitability relationship, accurately predicting the variation in species abundance at a high spatial resolution. We produced high-quality environmental suitability estimations for 50 endemic species to the Australian Wet Tropics. Environmental suitability derived from species distribution models was related to observed abundance estimated using data from 29 years of uninterrupted monitoring effort. We used the fitted relationship to accurately predict abundance at a fine scale across the species range. Our results showed that the abundance-suitability relationship was strong for endemic species in the Australian Wet Tropics. The predictive power of our models was high, explaining, on average, 55% of the deviance across taxa. Despite interspecific variation in the strength of the abundance-suitability relationship associated with potential intrinsic estimation biases, our approach provides a powerful tool for predicting abundance across the species range at a fine scale. The potential for robust abundance predictions from occurrence-based species distribution models shown in this study are numerous, and it could have a significant impact in enhancing species conservation and management decisions.
Data collection and methodology can be obtained from https://doi.org/10.1086/600087 and/or https://doi.org/10.1890/09-1069.1