Skip to main content
Dryad

Social Context Affects Camouflage in a Cryptic Fish Species

Data files

Oct 31, 2021 version files 58.64 KB

Abstract

Crypsis, or the ability to avoid detection and/or recognition, is an important and widespread anti-predator strategy across the animal kingdom. Many animals are able to camouflage themselves by adapting their body colour to the local environment. In particular, rapid changes in body colour are often critical to the survival of cryptic prey which rely on evading detection by predators. This is especially pertinent for animals subject to spatiotemporal variability in their environment, as they must adapt to acute changes in their visual surroundings. However, which features of the local environment are most relevant is not well understood. In particular, little is known about how social context interacts with other environmental stimuli to influence crypsis. Here we use a common cryptic prey animal, the goby (Pseudogobius species 2) to examine how the presence and body colour of conspecifics influences the rate and extent to which gobies change colour. We find that solitary gobies change colour to match their background faster and to a greater extent than gobies in pairs. Further, we find that this relationship holds irrespective of the colour of nearby conspecifics. This study demonstrates the importance of social context in mediating colour change in cryptic animals.