Skip to main content
Dryad logo

Data from: Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays

Citation

McCormack, John E et al. (2010), Data from: Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays, Dryad, Dataset, https://doi.org/10.5061/dryad.1786

Abstract

Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus Aphelocoma to test whether speciation coincided with mountain uplift or glacial cycles. Gene trees and species trees show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be significantly overestimated with gene-tree based approaches that do not correct for genetic divergence that predates speciation. In addition to coalescent stochasticity, Haldane's Rule could account for differences in timing estimates between mitochondrial and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for testing the links between diversification and specific biogeographic and geologic events.

Usage Notes

Location

El Salvador
United States
Guatemala
Mexico
Honduras