Skip to main content
Dryad

Adaptations to light contribute to the ecological niches and evolution of the terrestrial avifauna

Data files

Apr 28, 2021 version files 14.56 MB

Abstract

The role of light in structuring the ecological niche remains a frontier in understanding how vertebrate communities assemble and respond to global change. For birds eyes represent the primary external anatomical structure specifically evolved to interpret light, yet eye morphology remains understudied compared to movement and dietary traits. Here, I use Stanley Ritland’s unpublished measurements of transverse eye diameter from preserved specimens to explore the ecological and phylogenetic drivers of eye morphology for a third of terrestrial avian diversity (N = 2777 species). Species with larger eyes specialized in darker understory and forested habitats, foraging manoeuvres and prey items requiring long-distance optical resolution, and were more likely to occur in tropical latitudes. When compared to dietary and movement traits eye size was a top predictor for habitat, foraging manoeuvre, diet, and latitude, adding 9 – 29% more explanatory power. Eye size was phylogenetically conserved (lambda = 0.90), with phylogeny explaining 61% of eye size variation. I suggest that light has contributed to the evolution and assembly of global vertebrate communities and that eye size provides a useful predictor to assess community response to global change.