Skip to main content
Dryad logo

Data from: The influence of disorder on the exciton spectra in two-dimensional structures

Citation

Stephanovich, Vladimir (2020), Data from: The influence of disorder on the exciton spectra in two-dimensional structures, Dryad, Dataset, https://doi.org/10.5061/dryad.1g1jwsttr

Abstract

We study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova - Keldysh interaction by means if so-called fractional Scrodinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degeneracy (with respect to index µ) of the exciton eigenenergies at certain discrete value of screening radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior in above 2D semiconductor structures. Hence, they should be considered in device applications, where the interplay between dielectric screening and disorder is important.