Skip to main content
Dryad

Phytogeographic origin determines Tropical Montane Cloud Forest hydraulic trait composition

Cite this dataset

de Vasconcellos Barros, Fernanda et al. (2022). Phytogeographic origin determines Tropical Montane Cloud Forest hydraulic trait composition [Dataset]. Dryad. https://doi.org/10.5061/dryad.1jwstqjwn

Abstract

Tropical montane cloud forests (TMCF) have unique climatic conditions, which allow the coexistence of plant lineages with different phytogeographic origins from tropical versus temperate climates. Future climate projections suggest TMCFs will be subjected to increasing drought stress due to fog uplift and higher temperatures, possibly leading to tree mortality and local extinctions, and consequently changes in forest composition and functioning. Characterising community functional composition, trade-offs among traits and the drivers of community assembly is of utmost importance to improve our capacity to predict the response of montane plant communities to forecast climate change.

Here, we aimed to test if species from different phytogeographic origins (i.e. tropical - evergreen x deciduous - and temperate) differ in drought vulnerability and how the co-existence of these groups change the hydraulic composition of TMCF`s. We used a framework based on measurements of key hydraulic traits (i.e. xylem embolism resistance, hydraulic safety margin, stomata control, turgor loss point, minimum water potential) of 16 dominant species (> 70% of the forest basal area) within a TMCF in the Atlantic Rain Forest Domain in southeast Brazil. We used community-weighted means to model whether removing each species group would change the community hydraulic functional composition.

Temperate, tropical deciduous and tropical evergreen groups differ in their hydraulic functioning and these differences explain forest functional composition and taxa dominance. Temperate and tropical deciduous taxa were consistently more vulnerable hydraulically (i.e. lower safety margins and embolism resistance). The coexistence of different phytogeographic lineages is a key determinant of TMCF hydraulic composition. We also used models including phylogeny to evaluate the variation of hydraulic traits across Phytogeographic groups, and the results suggest some niche conservatism associated with plant hydraulic functioning.

Our results provide evidence of the importance of species phytogeographic origin on TMCF functioning, and niche conservatism in the evolution of hydraulic traits. The higher drought vulnerability observed in temperate group might be a mechanistic explanation for the expansion of temperate taxa distribution to wetter places during past colder and drier climate. Thus, we suggest hydraulic functional traits may be useful to predict future dynamics of TMCFs under changing climatic conditions.

Methods

A full description about the data sampling is in the manuscript related to this data. 

Usage notes

In the uploaded files there is a README file with the metadata that helps to understand each column. 

The only NAs are for the vulnerability curves data (P50, P88 and slope.vc) for Psychotria vellosiana, as it was not possible to have a curve for this species. See the paper for more details.

The species Ilex taubertiana was also not included in some group analysis as it was classified as cosmopolitan.  

Funding

FAPESP/Microsoft grant, Award: 2011/52072-0

Coordenação de Aperfeicoamento de Pessoal de Nível Superior, Award: Finance Code 001