Data from: Using network science to evaluate vulnerability of landslides on Big Sur Coast, California, USA
Data files
Aug 13, 2024 version files 714.34 MB
-
Coords_01.csv
152.89 KB
-
Coords_02.csv
136.55 KB
-
Coords_03.csv
139.40 KB
-
Coords_04.csv
144.30 KB
-
Coords_05.csv
156.74 KB
-
Coords_06.csv
156.54 KB
-
Coords_07.csv
152.59 KB
-
Coords_08.csv
157.36 KB
-
Coords_09.csv
136.64 KB
-
Coords_10.csv
125.50 KB
-
Coords_11.csv
123.93 KB
-
Coords_12.csv
165.13 KB
-
Coords_13.csv
111.38 KB
-
Coords_14.csv
136.80 KB
-
Coords_15.csv
121.78 KB
-
Coords_16.csv
129.32 KB
-
Coords_17.csv
147.27 KB
-
EdgeList_SubRegion01.csv
79.72 KB
-
EdgeList_SubRegion02.csv
70.62 KB
-
EdgeList_SubRegion03.csv
71.56 KB
-
EdgeList_SubRegion04.csv
75.12 KB
-
EdgeList_SubRegion05.csv
81.92 KB
-
EdgeList_SubRegion06.csv
81.94 KB
-
EdgeList_SubRegion07.csv
79.65 KB
-
EdgeList_SubRegion08.csv
84.01 KB
-
EdgeList_SubRegion09.csv
70.59 KB
-
EdgeList_SubRegion10.csv
65.48 KB
-
EdgeList_SubRegion11.csv
62.74 KB
-
EdgeList_SubRegion12.csv
88.18 KB
-
EdgeList_SubRegion13.csv
58 KB
-
EdgeList_SubRegion14.csv
71.31 KB
-
EdgeList_SubRegion15.csv
62.44 KB
-
EdgeList_SubRegion16.csv
66.41 KB
-
EdgeList_SubRegion17.csv
76.97 KB
-
InSAR.csv
3.90 KB
-
InterferogramList.csv
14.23 KB
-
Landslides.zip
52.29 KB
-
README.md
3.02 KB
-
SlopeWeightedEdges_SubRegion01.csv
153.16 KB
-
SlopeWeightedEdges_SubRegion02.csv
137.05 KB
-
SlopeWeightedEdges_SubRegion03.csv
139.59 KB
-
SlopeWeightedEdges_SubRegion04.csv
145.72 KB
-
SlopeWeightedEdges_SubRegion05.csv
157.97 KB
-
SlopeWeightedEdges_SubRegion06.csv
158.54 KB
-
SlopeWeightedEdges_SubRegion07.csv
153.72 KB
-
SlopeWeightedEdges_SubRegion08.csv
161.03 KB
-
SlopeWeightedEdges_SubRegion09.csv
136.71 KB
-
SlopeWeightedEdges_SubRegion10.csv
127.49 KB
-
SlopeWeightedEdges_SubRegion11.csv
122.87 KB
-
SlopeWeightedEdges_SubRegion12.csv
169.46 KB
-
SlopeWeightedEdges_SubRegion13.csv
114.50 KB
-
SlopeWeightedEdges_SubRegion14.csv
138.41 KB
-
SlopeWeightedEdges_SubRegion15.csv
121.87 KB
-
SlopeWeightedEdges_SubRegion16.csv
129.40 KB
-
SlopeWeightedEdges_SubRegion17.csv
149.40 KB
-
SubRegions.zip
4.01 KB
-
VelocityWeightedEdges_SubRegion01.csv
45.33 MB
-
VelocityWeightedEdges_SubRegion02.csv
40.82 MB
-
VelocityWeightedEdges_SubRegion03.csv
41.25 MB
-
VelocityWeightedEdges_SubRegion04.csv
42.91 MB
-
VelocityWeightedEdges_SubRegion05.csv
46.33 MB
-
VelocityWeightedEdges_SubRegion06.csv
46.40 MB
-
VelocityWeightedEdges_SubRegion07.csv
45.01 MB
-
VelocityWeightedEdges_SubRegion08.csv
47.25 MB
-
VelocityWeightedEdges_SubRegion09.csv
40.03 MB
-
VelocityWeightedEdges_SubRegion10.csv
37.40 MB
-
VelocityWeightedEdges_SubRegion11.csv
35.94 MB
-
VelocityWeightedEdges_SubRegion12.csv
49.36 MB
-
VelocityWeightedEdges_SubRegion13.csv
33.39 MB
-
VelocityWeightedEdges_SubRegion14.csv
40.41 MB
-
VelocityWeightedEdges_SubRegion15.csv
35.51 MB
-
VelocityWeightedEdges_SubRegion16.csv
37.56 MB
-
VelocityWeightedEdges_SubRegion17.csv
43.31 MB
Abstract
Landslide events, ranging from slips to catastrophic failures, pose significant challenges for prediction. In this study, a physically inspired framework is employed to assess landslide vulnerability at a regional scale (Big Sur Coast, California). Our approach integrates techniques from the study of complex systems combined with multivariate statistical analysis to identify unstable areas vulnerable to landslide events. We successfully apply a technique originally developed on the 2017 Mud Creek landslide, Big Sur, and refine our statistical metrics to characterize landslide vulnerability within a larger geographical area. Our results successfully classify four landslide events that occurred in the winter year of 2022-2023 as areas that are vulnerable to slope failure. The performance of our methods is compared to factors such as landslide location, slope, cumulative displacement, precipitation, and InSAR coherence, via a multivariate statistical analysis. We conclude that our network analyses, which provide a natural way to incorporate spatiotemporal dynamics, perform better as a monitoring technique than traditional methods. Our method has the potential for monitoring multiple landslide sites in real time, and evaluating which landslide sites are more vulnerable.
Methods
Open-source code R is used to create the networks and Matlab to run the community detection algorithm. The code can be found on https://github.com/vddesai-97/networkLandslide.git, which uses the community detection algorithim from https://github.com/GenLouvain/GenLouvain. The dataset contains 17 sub-regions with corresponding edge lists, spatial grids, and edge weights. In addition, the interferogram list for the InSAR data used for analysis and the shapefiles for the 44 landslide polygons are included.