Skip to main content
Dryad logo

Data from: Y-chromosome structural diversity in the bonobo and chimpanzee lineages

Citation

Oetjens, Matthew T. et al. (2017), Data from: Y-chromosome structural diversity in the bonobo and chimpanzee lineages, Dryad, Dataset, https://doi.org/10.5061/dryad.1kr29

Abstract

The male specific regions of primate Y-chromosomes (MSY) are enriched for multi-copy genes highly expressed in the testis. These genes are located in large repetitive sequences arranged as palindromes, inverted-, and tandem- repeats termed amplicons. In humans, these genes have critical roles in male fertility and are essential for the production of sperm. The structure of human and chimpanzee amplicon sequences show remarkable difference relative to the remainder of the genome, a difference that may be the result of intense selective pressure on male fertility. Four subspecies of common chimpanzees have undergone extended periods of isolation and appear to be in the early process of subspeciation.. A recent study found amplicons enriched for testis-expressed genes on the primate X-chromosome the target of hard selective sweeps, and male-fertility genes on the Y-chromosome may also be the targets of selection. However, little is understood about Y-chromosome amplicon diversity within and across chimpanzee populations. Here, we analyze 9 common chimpanzee (representing three subspecies: Pan troglodytes schweinfurthii, Pan troglodytes ellioti, and Pan troglodytes verus) and two bonobo (Pan paniscus) male whole-genome sequences to assess Y ampliconic copy-number diversity across the Pan genus. We observe that the copy-number of Y chromosome amplicons is variable amongst chimpanzees and bonobos, and identify several lineage-specific patterns, including variable copy-number of azoospermia candidates RBMY and DAZ. We detect recurrent switchpoints of copy-number change along the ampliconic tracts across chimpanzee populations, which may be the result of localized genome instability or selective forces.

Usage Notes