Data from: Coordination of bark and wood traits underlies forest-to-savanna evolutionary transitions
Data files
Dec 05, 2024 version files 143.40 KB
-
Full_data.xlsx
111.86 KB
-
README.md
31.54 KB
Abstract
Aim:
To test the hypothesis that adaptive shifts leading to the assembly of tropical savannas involved coordination between bark and wood traits, and to understand the underlying mechanisms.
Location: Tropical South America.
Taxon: Angiosperms (woody).
Methods:
We compiled data on three bark traits (total, inner, and outer relative bark thickness), wood density, maximum height, five secondary xylem traits, and on species’ habitat information (light environment, climate, soil, and fire history) for Neotropical savanna, forest, and generalist species (biome groups). We tested for pairwise and multivariate associations among traits across species, and if biome group and habitat conditions explained species positions along the resulting strategy axes.
Results:
Traits covaried along four different axes. The first axis was consistent with a trade-off between fire (thick barks) and shade tolerance (low bark to diameter ratio, high vessel density) and contributed to differentiate the three biome groups according to preference for shaded environments. Forest species also differed from savanna and generalist species in a separate axis by being more resource acquisitive. Maximum height and wood density did not strongly trade-off with bark thickness, although maximum height negatively covaried with relative outer bark thickness. Preference for shaded conditions was the main driver of variation in the two principal strategy axes, but temperature, fire and soil sand content also explained differences in plant stature between savanna and generalist species. Main conclusions: Allocation to bark is constrained by trade-offs with wood, opposing shade-tolerant and acquisitive forest species to fire-resistant and conservative savanna species. Rather than a single strategy axis, three axes are necessary to understand the functional differences among savanna, forest, and generalist species. Because two of these axes are controlled by light availability, the associated traits tend to covary in space and time, but not across species.
README: Data from: Coordination of bark and wood traits underlies forest-to-savanna evolutionary transitions
https://doi.org/10.5061/dryad.1ns1rn92j
This dataset includes functional trait data compiled from 83 published studies conducted in the following tropical South America biomes: moist forest, dry forest and savannas (including flooded savannas). The traits included are bark thickness divided by stem diameter (i.e., relative bark thickness; relBT), discriminating between the inner (relIBT) and the outer parts (relOBT), vessel diameter (VDi; i.e. vessel lumen diameter, excluding the walls), vessel density (VDe; i.e., quantity of vessels per millimetre square), intervessel pit diameter (IPD; i.e., the size of pits that link the vessels horizontally), vessel element length (VEL), fiber wall thickness (FWT), wood density (WD) and maximum tree height (HMax). We classified species as savanna (s), forest (f), and generalist (g) species (biome groups). The dataset includes both individual and species level information, depending on how the data were reported in the literature studies. Literature sources can be found in the published article. We also include mean species scores derived from a principal component analyses on species mean trait values and environmental data for species with a full trait set and available occurrence data in GBIF.
Description of the data and file structure
The first four spreadsheets are Raw Data for bark traits (Bark Traits Raw), secondary xylem traits (Sec Xyl Traits Raw), maximum height (Max Height Raw) and wood density (Wood Dens Raw) and include taxonomic information for all traits (species, genus and family). Reference source (ref) are provided for all traits except maximum height, for which data was obtained from a single reference source. Number of individuals sampled in each study are provided for bark and secondary xylem traits, as the information was not available for other traits. Bark and secondary xylem traits are presented either as individual values or species level means, depending on data availability from the reference source. In many cases, wood density data are presented as means from several references (as this was the format available from the original dataset).
The fifth spreadsheet (Data Environmental Analyses) contain mean species scores derived from a principal component analyses on plant functional traits, mean environmental data and mean geographic coordinates for each species. Mean environmental data and geographic coordinates were obtained by mean aggregating the values across all occurrence points per species. In all sheets, the biome at which species occur (biome) and taxonomic information are also reported. Missing data are coded as NA, when a study did not measure a particular trait.
Data use: The data can be used in functional trait studies interested in both interspecific and intraspecific trait variability, and plant strategies.
Abreviation keys and descriptions
relBT: relative bark thickness (proportion of diameter). Description: Bark thickness (mm) divided by stem diameter (mm).
relIBT: relative inner bark thickness (proportion of diameter). Description: the thickness of the inner bark part (mm) divided by stem diameter (mm).
relOBT: relative outer bark thickness (proportion of diameter). Description: the thickness of the outer bark part (mm) divided by stem diameter (mm).
VEL: Vessel Element Length (µm). Description: The length of vessel elements in the vessel.
IPD: Intervessel Pit Diameter (µm). Description: The size of pits that link the vessels horizontally.
VDi: Vessel Diameter (μm). Description: Vessel lumen diameter, excluding the walls
FWT: Fibre Wall Thickness (µm). Description: the thickness of fibre walls.
VDe: Vessel Density (mm-2). Description: quantity of vessels per millimetre square.
HMax: Maximum Plant Height (m). Description: the maximum height observed for the species in the field.
WD: Wood Density (g cm-3). Description: The mass of branches divided by its volume.
mat: Mean annual temperature. Description: mean annual temperature from WorldClim2 biovars (Bio_01; Fick & Hijmans, 2017) mean aggregated by species across all occurrence points from GBIF.
map: Mean annual precipitation. Description: mean annual precipitation from WorldClim2 biovars (Bio_12; Fick & Hijmans, 2017) mean aggregated by species across all occurrence points from GBIF.
rs: Rainfall seasonality (index). Description: rainfall seasonality index from WorldClim2 biovars (Bio_15; Fick & Hijmans, 2017) mean aggregated by species across all occurrence points from GBIF.
fire: fire frequency (1985-2020). Description: derived from the MAPBIOMES database (Alencar et al. 2020) mean aggregated by species across all occurrence points from GBIF.
cec: cation exchange capacity (cmolc/kg). Description: derived from the SoilGrids250m database (Hengl et al. 2017) mean aggregated by species across all occurrence points from GBIF.
sand: soil sand content (g/100g (%)). Description: derived from the SoilGrids250m database (Hengl et al. 2017) mean aggregated by species across all occurrence points from GBIF.
shade: shade preference (index; 1: shade avoider; 2: generalist; 3: shade specialist). Classified according to Mendonça et al. (2008)
biome: the biome at which the species ocurred (s: savanna; g: generalist; f: forest). Classified according to Mendonça et al. (2008)
ni: number of individuals sampled. Description: number of individuals of the species sampled in the study.
ref: reference sources. Description: reference source from which the data was obtained (listed in "Data sources").
Organ: plant organ at which secondary xylem traits were measured.
PC1-4: principal component axes 1-4. Principal component axes resulting from principal component analyses of species with a full trait set.
longitude: mean longitude of species occurrence points.
latitide: mean latitude of species occurrence points.
obs1: NA in cells refer to missing data, resulting from a lack of information in the literature for that specific trait to that specific species.
Sharing/Access information
Data sources
Abe, N., Miatto, R. C., & Batalha, M. A. (2018). Relationships among functional traits define primary strategies in woody species of the Brazilian “cerrado”. Revista Brasileira de Botanica, 41(2), 351–360. doi: 10.1007/s40415-018-0448-x
Alencar, A. A., Conciani, D. E., Costa, D. P., Rosa, E. R., Martin, E. V., Hasenack, H., Martenexen, L. F. M., Shimbo, J., Rosa, M., Crusco, N., Ferreira, N. C., Ribeiro, N. V., Santos, S. M. B., Duverger, S. G., Azevedo, T., Piontekowski, V. J., Arruda, V. L. S., Silva, W. V., & Rocha, W. F. (2020). Algorithm theoretical basis document (ATBD) – MapBiomas fire – collection 1.0 (Version 1). MapBiomas. https://mapbiomas.org/metodo-mapbiomas-fogo
Alisson Rodrigo Souza Reis. (2008). Anatomia foliar e do xilema secundário de espécies de Aspidosperma Mart. & Zucc. (Apocynaceae). Universidade Federal Rural da Amazônia.
Alisson Rodrigo Souza Reis, Abreu, J. L. L. de, Pinho, Davieliton Mesquita Lisboa, P. L. B., & Urbinati, C. V. (2014). Caracterização anatômica da madeira de mandioqueira (Qualea aubl.) comercializada no mercado madeireiro do estado do Pará. Enciclopédia Biosfera, 448–462.
Almeida, E. F. de. (2008). Anatomia foliar e da madeira de espécies de Xylopia L. (Annonaceae). Universidade Federal Rural da Amazônia.
Aragão, J. R. V. (2017). Ecologia da madeira e aspéctos ecofisiológicos foliares de quatro espécies de florestas tropicais secas no estado de Sergipe. Universidade Federal do Sergipe.
Balch, J. K., Nepstad, D. C., Curran, L. M., Brando, P. M., Portela, O., Guilherme, P., Reuning-Scherer, J. D., & de Carvalho, O. (2011). Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261(1), 68–77. https://doi.org/10.1016/j.foreco.2010.09.029
Barbosa, R. I., & Fearnside, P. M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management, 199(1), 115–123. https://doi.org/10.1016/j.foreco.2004.05.035
Barboza, L. L. (2018). Anatomia ecológica e comparada do tronco e ramo de espécies do gênero Vochysia (Vochysiaceae) em diferentes fitofisionomias do Cerrado. Universidade de Brasília.
Blagitz, M., Rodrigues Machado, S., & Marcati, C. R. (2018). Savanna trees do not have thicker outer bark than forest trees of two tropical species. Flora: Morphology, Distribution, Functional Ecology of Plants, 251(12), 20–31. https://doi.org/10.1016/j.flora.2018.12.003
Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75(5), 1437–1449. Retrieved from http://www.jstor.org/stable/1937467
Bosio, F., Soffiatti, P., & Boeger, M. R. T. (2010). Ecological wood anatomy of Miconia sellowiana (Melastomataceae) in three vegetation types of Paraná state, Brazil. IAWA Journal, 31(2), 179–190. https://doi.org/10.1163/22941932-90000015
Bucci, S J, Goldstein, G., Meinzer, F. C., Scholz, F. G., Franco, A. C., & Bustamante, M. (2004). Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology, 24(8), 891–899. https://doi.org/10.1093/treephys/24.8.891
Bucci, Sandra J, Scholz, F. G., Goldstein, G., Meinzer, F. C., Franco, A. C., Campanello, P. I., Villalobos-Vega, R., Bustamente, M., & Miralles-Wilhelm, F. (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 29(12), 2153–2167. https://doi.org/10.1111/j.1365-3040.2006.01591.x
Campbell, G., Schramm, M., Rodrigues, G., & Da Cunha, M. (2018). Key anatomical attributes for occurrence of Psychotria schlechtendaliana ( Müll . Arg .) Müll. Arg. ( Rubiaceae) in different successional stages of a tropical moist forest. Flora - Morphology, Distribution, Functional Ecology of Plants, 246–247(July), 33–41. https://doi.org/10.1016/j.flora.2018.07.004
Carvalho, P. G. S.. (2013). Anatomia e teores nutricionais do xilema secundário de Citharexylum myrianthus Cham (Verbenaceae) em duas condições de solo. Universidade Federal do Paraná.
Cosmo, N. L., Kuniyoshi, Y. S., & Botosso, P. C. (2010). Anatomia da madeira de Sebastiania commersoniana (Baillon) Euphorbiaceae, Downs. Acta Botanica Brasilica, 24(3), 747–755. https://doi.org/10.1590/S0102-33062010000300018
Costa, W. S. da, Cunha, M. Da, Rodrigues, P. J. F. P., Iguatemy, M. de A., Valladares, F., & Barros, C. F. (2020). Instraspecific variation in functional wood anatomy of tropical trees caused by effects of forest edge. Forest Ecology and Management, 473, 118305. https://doi.org/10.1016/j.foreco.2020.118305
Costa, T. G., Bianchi, M. L., Protásio, T. de P., Trugilho, P. F., & Pereira, A. J. (2014). Wood quality of five species from cerrado for production of charcoal. Cerne, 20(1), 37–45. https://doi.org/10.1590/S0104-77602014000100005
Cury, G., & Tomazello-Filho, M. (2012). Wood anatomy of pioneer tree species from State of São Paulo. Scientia Forestalis, 40(96), 491–498.
Dantas, V. L., Batalha, M. A., & Pausas, J. G. (2013). Fire drives functional thresholds on the savanna-forest transition. Ecology, 94(11), 2454–2463. https://doi.org/10.1890/12-1629.1
De Antonio, A. C., Scalon, M. C., & Rossatto, D. R. (2019). The role of bud protection and bark density in frost resistance of savanna trees. Plant Biology. https://doi.org/10.1111/plb.13050
Denardi, L., & Marchiori, J. N. C. (2005). Anatomia ecológica da madeira de Blepharocalyx salicifolius (H. B. K.) Berg. Ciência Florestal, 15, 119–127. https://doi.org/10.5902/198050981829
Dória, L. C., Podadera, D. S., Batalha, M. A., Lima, R. S., & Marcati, C. R. (2016). Do woody plants of the Caatinga show a higher degree of xeromorphism than in the Cerrado ? Flora - Morphology, Distribution, Functional Ecology of Plants, 224, 244–251. https://doi.org/10.1016/j.flora.2016.09.002
Faria, M. C. G. De, Silva Netto, C. D. M., Lima, P. A. F., Chagas, M. P., Filho, M. T., & Junior, C. R. S. (2020). Brazilian Cerrado species: wood characteristics. Bioscience Journal, 36(4), 1335–1352. https://doi.org/10.14393/BJ-v36n4a2020-48044
Ferreira, C. A., Ribeiro, A. D. O., Urbinati, C. V., Duarte, P. J., Mori, F. A., & Miglio, B. V. (2020). Comparative wood anatomy of two tropical species. Scientia Agraria Paranaensis, 19(1), 43–51. https://doi.org/10.18188/sap.v19i1.22640
Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1- km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
Florez, J. B., Blagitz, M., Kniess, D. D. C., Vieira, H. C., Santos, G. N. dos, Silva, A. C. da, et al. (2017). Anatomia do xilema secundário e da casca de* Ilex theezans* Mart. ex Reissek EM Floresta Ombrófila Mista. III Congresso Brasileiro de Ciência e Tecnologia Da Madeira, 12. Florianópolis.
França, R. F. (2015). Estrutura anatômica e do carvão de espécies da caatinga. Universidade Federal do Paraná.
Goulart, S. L. (2012). Anatomia comparada do lenho de raiz e caule de Aegiphila sellowiana Cham (Verbenaceae). Cerne, 18, 595–606. https://doi.org/10.1590/S0104-77602012000400009
Goulart, S. L., & Marcati, C. R. (2008). Anatomia comparada do lenho em raiz e caule de Lippia salviifolia Cham. (Verbenaceae). Revista Brasileira de Botanica, 31(2), 263–275. https://doi.org/10.1590/S0100-84042008000200009
Goulart, S. L., Ribeiro, A. D. O., Mori, F. A., Almeida, N. F. de, & Assis, C. O. de. (2015). Anatomia do lenho de raíz, tronco e galho de barbatimão (Stryphnodendron adstringens (Mart) Coville). Cerne, 329–338. https://doi.org/10.1590/01047760201521021627
Hao, G. Y., Hoffmann, W. A., Scholz, F. G., Bucci, S. J., Meinzer, F. C., Franco, A. C., Goldstein, G. (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia, 155(3), 405–415. https://doi.org/10.1007/s00442-007-0918-5
Heerdt, S. T., & Melo-Júnior, J. C. F. de. (2016). Anatomia sistemática e ecológica da madeira de seis espécies de Nectandra Rol. ex Rottb. (Lauraceae). Balbuinia, 54, 11–21. https://doi.org/10.5902/2358198022563
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer- Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12, e0169748.
Iris Almeida dos Santos. (2007). Caracterização anatômica e dendrométrica da madeira de Xylopia emarginata Mart . (Annonaceae) com vistas à sua utilização mais apropriada. Universidade de Brasília.
Jono, V. (2009). Anatomia Ecológica do Lenho e Atividade Cambial de Roupala rhombifolia ( Proteaceae ) na Serra do Cipó (MG). Universidade de São Paulo.
Kotina, E. L., Fiaschi, P., Plunkett, G. M., & Oskolski, A. A. (2013). Systematic and ecological wood anatomy of Neotropical Schefflera (Araliaceae), with an emphasis on the Didymopanax group. Botanical Journal of the Linnean Society, 173, 452–475. https://doi.org/10.1111/boj.12082
Lara, N. O. T. de. (2012). Sistema vascular e atividade cambial em Alibertia concolor (Cham) K. Schum. (Rubiaceae). Universidade Estadual Paulista.
Leal, M. O. L., Nascimento, L. B. do, Coutinho, A. J., Tamaio, N., & Brandes, A. F. das N. (2020). Development of external vascular cylinders (neoformations) in stems and roots of Chiococca alba (L.) Hitchc. (Rubiaceae). Flora - Morphology, Distribution, Functional Ecology of Plants, 264, 151569. https://doi.org/10.1016/j.flora.2020.151569
Lima, R. S. de, Oliveira, P. L. de, & Rodrigues, L. R. (2009). Anatomia do lenho de Enterolobium contortisiliquum (Vell.) Morong (Leguminosae-Mimosoideae) ocorrente em dois ambientes. Revista Brasileira de Botanica, 32(2), 361–374.
Longui, E. L., Bufolo, A., Aguiar, O. T. de, Lima, I. L. de, & Sandra Monteiro Borges Florsheim. (2009). Anatomia comparada do lenho de Piptadenia gonoacantha (Mart.) J.F.Macbr. em dois tipos de vegetação. Hoehnea, 36(4), 715–724. https://doi.org/10.1590/S2236-89062009000400010
Longui, E. L., Costa, N. O., Cielo-Filho, R., Marcati, C. R., Romeiro, D., Rajput, K. S., Lima, I. L., & Florsheim, S. M. B. (2014). Wood and leaf anatomy of Copaifera langsdorfii dwarf trees. IAWA Journal, 35(2), 170–185. https://doi.org/10.1163/22941932-00000058
Longui, E. L., Romeiro, D., Silva, M. T., Ribeiro, A., Gouveia, T. C., Lima, I. L. de, & Florsheim, S. M. B. (2011). Caracterização do lenho e variação radial de Pittosporum undulatum Vent . ( pau-incenso ). Hoehnea, 38(1), 37–50. https://doi.org/10.1590/S2236-89062011000100004
Longui, E. L., Sonsin, J., Santos, M., Arzolla, F. A. R. D. P., Vilela, F. E. S. P., Lima, I. L. de, Florsheim, F. M. B., & Descio, F. (2016). Differences between root and stem wood in seedlings and sprouts of Sessea brasiliensis (Solanaceae). Rodriguésia, 67(3), 615–626. https://doi.org/10.1590/2175-7860201667306
Loram-Lourenço, L., Farnese, F. dos S., Sousa, L. F. de, Alves, R. D. F. B., Andrade, M. C. P. de, Almeida, S. E. da S., Moura, L. M. F., Silva, F. G., Galmés, J. Cochard, H., Franco, A. C., & Menezes-Silva, P. E. (2020). A Structure Shaped by Fire, but Also Water: Ecological Consequences of the Variability in Bark Properties Across 31 Species From the Brazilian Cerrado. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01718
Luna, B. N. De, Freitas, M. D. F., & Barros, C. F. (2018). Systematic and phylogenetic implications of the wood anatomy of six Neotropical genera of Primulaceae. Plant Systematics and Evolution, 304(6), 775–791. https://doi.org/10.1007/s00606-018-1509-0
Machado, S. R., Rodella, R. A., Angyalossy, V., & Marcati, C. R. (2007). Structural variations in root and stem wood of Styrax (styracaceae) from Brazilian forest and cerrado. IAWA Journal, 28(2), 173–188. https://doi.org/10.1163/22941932-90001632
Magalhães, A. F. (2020). Densidade, anatomia e condutividade hidráulica de Machaerium opacum, Qualea grandiflora e Xylopia aromarica no Cerrado mineiro. Universidade Federal de Uberlândia.
Manvailer, V., & Scremin-Dias, E. (2020). Drought adaptation in populations of Inga vera subsp . affinis (DC.) T . D . Penn . that are exposed to extensive seasonal flooding. Flora - Morphology, Distribution, Functional Ecology of Plants, 271, 151678. https://doi.org/10.1016/j.flora.2020.151678
Marcati, C. R., Angyalossy-Alfonso, V., & Benetati, L. (2001). Anatomia comparada do lenho de Copaifera langsdorffii Desf. (Leguminosae-Caesalpinoideae) de floresta e cerradão. Revista Brasileira de Botanica, 24(3), 311–320. http://dx.doi.org/10.1590/S0100-84042001000300010
Marcati, C. R., Longo, L. R., Wiedenhoeft, A., & Barros, C. F. (2014). Comparative wood anatomy of root and stem of Citharexylum myrianthum (Verbenaceae). Rodriguésia, 65(3), 567–576. https://doi.org/10.1590/2175-7860201465301
Marcelo-Peña, J. L., Santini Jr, L., & Tomazello Filho, M. (2019). Wood anatomy and growth rate of seasonally dry tropical forest trees in the Marañón River Valley, northern Peru. Dendrochronologia, 55, 135–145. https://doi.org/10.1016/j.dendro.2019.04.008
Markesteijn, L., Bongers, F., Paz, H., Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance.* New Phytologist*, 191(2), 480–495. https://doi.org/10.1111/j.1469-8137.2011.03708.x
Marques, P. A., Callado, C. H., Barros, C. F., & Costa, C. G., (2012). Intraspecific variation in wood anatomy of Eugenia uniflora L. in two plant communities of the Atlantic forest complex. Floresta e Ambiente, 19(4), 483–496. https://doi.org/10.4322/floram.2012.056
Mendonça, R. C., Felfili, J. M., Walter, B. M. T., da Silva Júnior, M. C., Rezende, A. V., Filgueiras, T. S., Nogueira, P. E., & Fagg, C. W. (2008). Flora vascular do bioma Cerrado. In S. M. Sano, S. P. de Almeida, & J. F. Ribeiro (Eds.), Cerrado: Ecologia e Flora (1st ed., pp. 421–1279). Embrapa Informação Tecnológica.
Miatto, R. C. (2011). A inclusão da abundância na diversidade funcional aumenta o seu poder de previsão?: teste em uma comunidade de cerrado. Universidade Federal de São Carlos.
Miranda, T. D., Palhares, D., Cury, N. F., Pereira, L. A. R., & Silveira, C. E. dos S. (2018). Comparative wood and bark anatomy of stem, root and xylopodium of Jacaranda ulei (Bignoniaceae). Balbuinia, 64, 1–18. https://doi.org/10.5902/2358198032114
Mota, S., Eduardo, L., Melo, D. L., Ribeiro, A. D. O., Selvati, A. O., Pereira, H., & Mori, F. A. (2017). Ecologic features of woody anatomy of Casearia sylvestris SW (Salicicaceae) in three Brazilian ecosystems. Cerne, 23(4), 445–453. https://doi.org/10.1590/01047760201723042387
Moutinho, V. H. P., Lima, J. T., Águiar, J. O. R., & Nogueira, M. G. O. (2012). Scientific determination and wood anatomical features of species know in Brazilian Amazonia as matá-matá (Eschweilera spp.). Revista de Ciências Agrárias, 55(2), 134–141.
Nagamine-Pinheiro, N., Fagg, C. W., Gomes, S. M., & Oliveira, R. C. (2021). Vegetative anatomy, morphology and histochemistry of three species of Malpighiaceae used in analogues of the Amazonian psychoactive beverage Ayahuasca. Flora - Morphology, Distribution, Functional Ecology of Plants, 275, 151760. https://doi.org/10.1016/j.flora.2020.151760
Nascimento, M. B. F. do. (2017). Anatomia caulinar de Zanthoxylum rhoifolium Lam. (Rutaceae) e Moquiniastrum polymorphum (Less.) G. Sancho (Asteraceae) que ocorrem em Cerrado e Mata Atlântica Atlântica. Universidade Estadual Paulista.
Nobre, J. R. C., Melo, L. E. de L., Figueiredo, M. F. De, Couto, A. M., & Gomes, J. I. (2019). Anatomical Differences Between the Wood of Three Species Commercialized as “Freijó” in the Amazon Region. Floresta e Ambiente, 26(4), e20171094. https://doi.org/10.1590/2179-8087.109417
Oliveira-filho, A. T. (2017). NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Retrieved August 16, 2017, from Universidade Federal de Minas Gerais website: http://www.neotroptree.info/
Palhares, D., Paula, J. E. De, Pereira, L. A. R., & Silveira, C. E. dos S. (2007). Comparative wood anatomy of stem, root and xylopodium of Brosimum gaudichaudii (Moraceae). IAWA Journal, 28(1), 83–94. https://doi.org/10.1163/22941932-90001621
Poorter, L., McDonald, I., Alarcon, A., Fichtler, E., Licona, J.-C., Peña-Carlos, M., Sterck, F., Villegas, Z., & Sass-klaassen, U. (2009). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
Reis, A. R. S., Alves, R. S., Urbinati, C. V., Santos, J. X., Silva, J. R., & Lisboa, P. L. B. (2015). Anatomia do xilema secundário de sete espécies de Vochysia Aubl. (Vochysiaceae), conhecidas como quaruba no Estado do Pará, Brasil. Biota Amazonia, 5(2), 45–51. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v5n2p45-51
Ribeiro, S. C., Fehrmann, L., Soares, C. P. B., Jacovine, L. A. G., Kleinn, C., & de Oliveira Gaspar, R. (2011). Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 262(3), 491–499. https://doi.org/10.1016/j.foreco.2011.04.017
Rodrigues, M. I. de A. (2017). Anatomia do eixo vegetativo aéreo de Protium heptaphyllum (Aubl.) Marchand. (Burseraceae)com ênfase no sistema secretor em ambiente com influência das marés. Universidade Estadual Paulista.
Rury, P. M. (1985). Systematic and Ecological Wood Anatomy of the Eythroxylaceae. IAWA Bulletin, 6(4), 365–396. https://doi.org/10.1163/22941932-90000963
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D., & Jones, T. (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140(4), 543–550. https://doi.org/10.1007/s00442-004-1624-1
Santiago, V. H. D. (2017). Anatomia Comparada do Lenho do Gênero Pterodon Vogel (Fabaceae), voltada à taxonomia. Universidade de Brasília.
Santos, D. G. dos, Santos, K. C. M. dos, Santos, G. U. C. A. dos, & Callado, C. H. (2019). Intra and interspecific analysis of the wood of two dioecious species of the restingas of Southeastern Brazil. Flora - Morphology, Distribution, Functional Ecology of Plants, 250, 1–8. https://doi.org/10.1016/j.flora.2018.11.009
Santos, G. dos, & Miller, R. B. (1992). Wood anatomy of Tecomeae. In: Flora Neotropica. Monograph 25(II). Bignoniaceae-PartII. (Tribe Tecomeae) (p.* *336-358). The New York Botanical Garden.
Scalon, M. C., Domingos, F. M. C. B., Cruz, W. J. A. da, Marimon Júnior, B. H., Marimon, B. S., & Oliveras, I. (2020). Diversity of functional trade-offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 31(1), 139–150. https://doi.org/10.1111/jvs.12823
Silva, C. M. S., Harakava, R., Sonsin-oliveira, J., Marcati, C. R., Machado, S. R., Ribeiro, R. V, & Habermann, G. (2017). Physiological and structural traits of the congeneric species Styrax ferrugineus and S . pohlii occurring in contrasting environments. Flora - Morphology, Distribution, Functional Ecology of Plants, 235, 51–58. 10.1016/j.flora.2017.01.014
Silva, L. B. da, Santos, F. de A. R. dos, Gasson, P., & Cutler, D. (2011). Estudo comparativo da madeira de Mimosa ophthalmocentra Mart. ex Benth e Mimosa tenuiflora (Willd.) Poir. (Fabaceae-Mimosoideae) na caatinga nordestina. Acta Botanica Brasilica, 25(2), 301–314. https://doi.org/10.1590/S0102-33062011000200006
Silva, M. dos S. (2013). Anatomia ecológica e potencial econômico da madeira de espécies nativas da Mata Atlântica, Serra da Jiboia, Bahia, Brasil. Universidade Estadual de Feira de Santana.
Silva, M. G., Mori, F. A., Ferreira, G. C., Ribeiro, A. O., Carvalho, A. G., & Barbosa, A. C. M. C. (2016). Anatomical and physical studies of Schizolobium parahyba var. amazonicum wood from native stands in eastern Amazonia. Scientia Forestalis, 44(110), 293–301. https://dx.doi.org/10.18671/scifor.v44n110.02
Soffiatti, P., Boeger, M. R. T., Nisgoski, S., & Kauai, F. (2016). Wood anatomical traits of the Araucaria Forest, Southern Brazil. Bosque, 37(1), 21–31. https://doi.org/10.4067/S0717-92002016000100003
Sonsin, J. O., Gasson, P., Machado, S.R., Caum, C., & Marcati, C. R. (2014). Atlas da diversidade de madeiras do cerrado paulista. Fepaf, Botucatu.
Sousa, W. L. F. de. (2016). Anatomia ecológica do lenho de espécies ocorrentes em três fitofisionomias nordestinas do Brasil. Universidade Federal da Paraíba.
Vale, A. T., Dias, I. S., & Santana, M. A. E. (2010). Relações entre propriedades químicas, físicas e energéticas da madeira em cinco espécies de cerrado. Ciência Florestal, 20(1), 137–145. https://doi.org/10.5902/198050981767
Vergílio, P. C. B., & Marcati, C. R. (2017). Adaptive and diagnostic significance of the bark of Stryphnodendron polyphyllum (Leguminosae) from the Cerrado. Australian Journal of Botany, 65(2), 157–171. https://doi.org/10.1071/BT16212
Vieira, A. J. R., & Lisi, C. S. (2019). Caatinga tree wood anatomy : perspectives on use and conservation. Floresta e Ambiente, 26(2), e20170997. http://dx.doi.org/10.1590/2179-8087.099717
Voigt, A. R. A., Soffiatti, P., Tomazello Filho, M., Lisi, C. S. & Boeger, M. R. T. (2010). Anatomia comparada do lenho de* Caryocar brasiliense* (Caryocaraceae) em fisionomias de cerradão e cerrado sensu stricto. Rodriguésia, 61(4), 603–613. https://doi.org/10.1590/2175-7860201061404
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository, https://doi.org/10.5061/dryad.234
Methods
This dataset was compiled from 83 published studies conducted in the following tropical South America biomes: moist forest, dry forest and savannas (including flooded savannas). We compiled data on bark thickness divided by stem diameter (i.e., relative bark thickness; relBT), discriminating between the inner (relIBT) and the outer parts (relOBT), vessel diameter (VDi; i.e. vessel lumen diameter, excluding the walls), vessel density (VDe; i.e., quantity of vessels per millimetre square), intervessel pit diameter (IPD; i.e., the size of pits that link the vessels horizontally), vessel element length (VEL), fiber wall thickness (FWT), wood density (WD) and maximum tree height (HMax). We classified species as savanna (s), forest (f), and generalist (g) species (biome groups). The dataset includes both individual and species level information, depending on how the data were reported in the literature studies. Literature sources can be found in the published article.
We also searched the Global Biodiversity Information Facility (GBIF) for occurrence data to the subset of species for which we had a full trait set (doi: 10.15468/dl.tf5yvv) in order to obtain environmental data for these species (the GBIF data is not included in this dryad submission). Mean principal component axes and environmental information per species are presented for the species with available occurrence information (63 species). We excluded occurrence data from outside of Brazil (the main region represented in our dataset). For the remaining occurrences, we obtained data on mean annual precipitation (map), rainfall seasonality (rs), mean annual temperature (mat), fire frequency (fire), soil sand content (sand) and soil cation exchange capacity (cec). We also created an index for the preference of species for shaded environments (shade): a value of 1 was attributed to the least shade tolerant species (i.e., savanna species), 3 to the most shade adapted species (i.e., forest species) and 2 to generalist species. Details can be found in the published article.