Skip to main content
Dryad logo

Data from: Occurrence of spintronics behaviour (half-metallicity, spin gapless semiconductor and bipolar magnetic semiconductor) depending on the location of oxygen vacancies in BiFe 0.83 Ni 0.17 O 3

Citation

Iyyappa Rajan, P.; Mahalakshmi, S.; Chandra, Sharat (2017), Data from: Occurrence of spintronics behaviour (half-metallicity, spin gapless semiconductor and bipolar magnetic semiconductor) depending on the location of oxygen vacancies in BiFe 0.83 Ni 0.17 O 3, Dryad, Dataset, https://doi.org/10.5061/dryad.1qs7p

Abstract

The current communication signifies the effect of oxygen vacancies (OVs) both qualitatively and quantitatively in multiferroic BiFe0.83Ni0.17O3 by an in-depth atomic-level investigation of its electronic structure and magnetization properties, and these materials have a variety of applications in spintronics, optoelectronics, sensors and solar energy devices. Depending on the precise location of OVs, all the three types of spintronic material namely half-metallic, spin gapless semiconductor and bipolar magnetic conductor have been established in a single material for the first time and both super-exchange and double-exchange interactions are possible in accordance with the precise location of OVs. We have also calculated the vacancy formation energies to predict their thermodynamic stabilities. These results can highlight the impact and importance of OVs that can alter the multiferroic properties of materials.

Usage Notes