Skip to main content
Dryad logo

Data from: Species Selection Regime and Phylogenetic Tree Shape

Citation

Verboom, George et al. (2019), Data from: Species Selection Regime and Phylogenetic Tree Shape, Dryad, Dataset, https://doi.org/10.5061/dryad.1sf007b

Abstract

Species selection, the effect of heritable traits in generating between-lineage diversification rate differences, provides a valuable conceptual framework for understanding the relationship between traits, diversification and phylogenetic tree shape. An important challenge, however, is that the nature of real diversification landscapes – curves or surfaces which describe the propensity of species-level lineages to diversify as a function of one or more traits – remains poorly understood. Here we present a novel, time-stratified extension of the QuaSSE model in which speciation/extinction rate is specified as a static or temporally-shifting Gaussian or skewed-Gaussian function of the diversification trait. We then use simulations to show that the generally imbalanced nature of real phylogenetic trees, as well as their generally greater-than-expected frequency of deep branching events, are typical outcomes when diversification is treated as a dynamic, trait-dependent process. Focusing on four basic models (Gaussian-speciation with and without background extinction; skewed-speciation; Gaussian-extinction), we also show that particular features of the species selection regime produce distinct tree shape signatures and that, consequently, a combination of tree shape metrics has the potential to reveal the species selection regime under which a particular lineage diversified. We evaluate this idea empirically by comparing the phylogenetic trees of plant lineages diversifying within climatically- and geologically-stable environments of the Greater Cape Floristic Region, with those of lineages diversifying in environments that have experienced major change through the Late Miocene-Pliocene. Consistent with our expectations, the trees of lineages diversifying in a dynamic context are less balanced, show a greater concentration of branching events close to the present, and display stronger diversification rate-trait correlations. We suggest that species selection plays an important role in shaping phylogenetic trees but recognize the need for an explicit probabilistic framework within which to assess the likelihoods of alternative diversification scenarios as explanations of a particular tree shape.

Usage Notes