Skip to main content
Dryad

Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1-disease

Data files

Dec 09, 2020 version files 106.96 KB

Abstract

Objective: To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of RFC1-repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS).

Methods: Multimodal RFC1 repeat screening (PCR, southern blot, whole-exome/genome (WES/WGS)-based approaches) combined with cross-sectional and longitudinal deep-phenotyping in (i) cross-European cohort A (70 families) with ≥2 features of CANVAS and/or ataxia-with-chronic-cough (ACC); and (ii) Turkish cohort B (105 families) with unselected late-onset ataxia.

Results: Prevalence of RFC1-disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1-disease was also identified in Western and Eastern Asians, and even by WES. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (=overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea and/or dystonia (11%). Ataxia progression was ~1.3 SARA points/year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1]), but also included early falls, variable non-linear phases of MSA-C-like progression (SARA 2.5-5.5/year), and premature death. Treatment trials require 330 (1-year-trial) and 132 (2-year-trial) patients in total to detect 50% reduced progression.

Conclusions: RFC1-disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes, yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1-treatment trials.