Skip to main content
Dryad logo

Data from: Shedding light on bird egg color: pigment as parasol and the dark car effect

Citation

Lahti, David C.; Ardia, Daniel R. (2015), Data from: Shedding light on bird egg color: pigment as parasol and the dark car effect, Dryad, Dataset, https://doi.org/10.5061/dryad.21723

Abstract

The vibrant colors of many birds’ eggs, particularly those that are blue to blue-green, are extraordinary in that they are striking traits present in hundreds of species that have nevertheless eluded evolutionary functional explanation. We propose that egg pigmentation mediates a trade-off between two routes by which solar radiation can harm bird embryos: transmittance through the eggshell and overheating through absorbance. We quantitatively test four components of this hypothesis on variably colored eggs of the village weaverbird (Ploceus cucullatus) in a controlled light environment: (1) damaging ultraviolet radiation can transmit through bird eggshells, (2) infrared radiation at natural intensities can heat the interior of eggs, (3) more intense egg coloration decreases light transmittance (“pigment as parasol”), and (4) more intense egg coloration increases absorbance of light by the eggshell and heats the egg interior (“dark car effect”). Results support all of these predictions. Thus, in sunlit nesting environments, less pigmentation will increase the detrimental effect of transmittance, but more pigmentation will increase the detrimental effect of absorbance. The optimal pigmentation level for a bird egg in a given light environment, all other things being equal, will depend on the balance between light transmittance and absorbance in relation to embryo fitness.

Usage Notes