Skip to main content
Dryad

Data from: Development of common leaf-footed bug pests depends on the presence and identity of their environmentally-acquired symbionts

Cite this dataset

Hunter, Martha et al. (2021). Data from: Development of common leaf-footed bug pests depends on the presence and identity of their environmentally-acquired symbionts [Dataset]. Dryad. https://doi.org/10.5061/dryad.2bvq83bqz

Abstract

Many beneficial symbioses between bacteria and their terrestrial arthropod hosts are vertically transmitted from mother to offspring, ensuring the progeny acquire necessary partners. Unusually, in several families of coreoid and lygeoid bugs (Hemiptera), nymphs must instead ingest the beneficial symbiont, Burkholderia (sensu lato), from the environment early in development. We studied the effects of Burkholderia on development of two species of leaf-footed bug (Coreidae) in the genus Leptoglossus, L. zonatus and L. phyllopus. We found no evidence for vertical transmission of the symbiont, but found stark differences in performance between symbiotic and aposymbiotic individuals. Symbiotic nymphs grew more rapidly, were approximately four times more likely to survive to adulthood than aposymbiotic bugs, and were two times larger. These findings suggest that Burkholderia is an obligate symbiont for Leptoglossus species. We also tested for variation in fitness effects conferred by four symbiont isolates representing different species within Burkholderia’s insect-associated Stinkbug Beneficial and Environmental (SBE) clade. While three isolates conferred similar benefits to hosts, nymphs associated with the fourth isolate grew more slowly and weighed significantly less as adults. The effects of the four isolates were similar for both Leptoglossus species. This work indicates that both Burkholderia acquisition and isolate identity play critical roles in the growth and development of Leptoglossus.

Importance

Leptoglossus zonatus and L. phyllopus are important polyphagous pests and both species have been well-studied, but generally without regard to their dependance on a bacterial symbiont. Our results indicate that the central role of Burkholderia in the biology of these insects, as well as in other leaf-footed bugs, should be considered in future studies of coreid life history, ecology and pest management. Our work suggests acquisition of Burkholderia is critical for the growth and development of Leptoglossus species. Further, we found that there was variation in performance outcomes according to symbiont identity, even among members of the Stinkbug Beneficial and Environmental clade. This suggests that although environmental acquisition of a symbiont can provide extraordinary flexibility in partner associations, it also carries a risk if the partner is sub-optimal.

Methods

The dataset consists of measures of development time, mass and diagnostic PCR data. It also includes the set of 16S sequences used to construct the phylogeny of Fig. S1. The files are saved as individual csv files with an associated README file to explain column headings.

Funding

National Institute of Food and Agriculture, Award: 2019-67013-29407